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GEOMETRY OF SOME SUBMANIFOLDS IN A

3-DIMENSIONAL WALKER MANIFOLD

Franck Houenou∗, Ameth Ndiaye, and Moussa Koivogui

Abstract. In this work, we study the geometric properties of curves and

surfaces in a Walker 3-dimensional manifold. We characterize and give
a geometric description of normal and binormal surfaces passing through

a giving curve. We deduce the geometries of such surfaces from those of

the curve.

1. Introduction

The accurate knowledge of submanifolds of a given manifold is of great
help while studying the features (geometric and topological properties) of the
ambient manifold. The geometry of the Grassmanian of any manifold gives a
total description of objects lying in the later. Therefore it is interesting to get a
natural and easy read of geometric properties of different level submanifolds of
a given manifold. Some of the tools helping study these submanifolds are the
geometric evolution equations which provides new ways to address a variety of
non-linear problems in Riemannian geometry, and gives numerous applications
either in mathematics or in physics. They are divided into classes of intrinsic
and extrinsic curvature flows.

The curve flows are studied by many authors. Mohamed [12], studied and
gave the general description of the motions of spacelike curves with space-
like normal vector in a 3-dimensional de-Sitter space S2,1 and provided some
explicit examples of motions of these curves in S2,1. Schief and Rogers [15]
studied the binormal motion of curves with constant curvatures. Abdel-All et
al. [1], constructed and studied new geometrical models of flows of curves and
surfaces.

On a Riemannian manifold, the shortest path between any two given points
is called a geodesic while the surface (in general submanifold) with smallest
area (volume) of any given is called a minimal surface (submanifold). It is well
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known that the mean curvature flow is the greatest flow to assess a minimal
submanifold.

In this work the ambient space we will consider is a Lorentzian three-
manifold admitting a parallel null vector field called a strict Walker manifold.
It is known that Walker metrics have served as a powerful tool of constructing
interesting indefinite metrics which exhibit various aspects of geometric prop-
erties not given by any positive definite metrics. For more detail on Walker
manifold see [3, 6].

The study of differential geometry of surfaces captured many researchers’
attention. In [17], Tamura showed that complete surfaces of constant mean
curvature in E3 on which there exist two helical geodesics through each point
are planes, spheres or circular cylinders. In [13], the authors construct two
special families of ruled surfaces in a three dimensional strict Walker manifold.
The local degeneracy (resp. non-degeneracy) to one of this family has a strong
consequence on the geometry of the ambient Walker manifold. In [14], the
same authors study minimal translations surfaces in a strict Walker 3-manifold.
Based on the existence of two isometries, they classify minimal translation
surfaces on this class of manifold.

Motivated by the above works, in this paper we study the geometric prop-
erties of some type of surfaces in a strict Walker 3-dimensional manifold. We
characterize and give a geometric description of normal and binormal surfaces
passing through a giving curve.

The paper is organized as follows: In Section 2, we give some preliminaries
about the geometry of Walker 3-manifold. In Section 3 we define the geometry
of curves in a Walker 3-manifold. In Section 4 we study the geometry of surfaces
in a 3-dimensional Walker manifold and in Section 5, we study the normal and
the binormal surfaces in a strict Walker 3-manifold.

2. Background material

2.1. Walker structures in 3-dimension

A Walker n-manifold is a pseudo-Riemannian manifold, which admits a field

of null parallel r-planes with r ⩽
n

2
. The canonical forms of the metrics were

investigated by Walker [3] who derived adapted coordinates to a parallel plane
field. Therefore, a Walker structure is modeled on Rn with such coordinates.
The Walker structure gϵf (of parameters f and ϵ = ±1) of a 3-dimensional

manifold M with adapted coordinates (x, y, z) is expressed as

gϵf = dx ◦ dz + ϵdy2 + f(x, y, z)dz2(1)



Geometry of some submanifolds in a 3-dimensional Walker manifold 637

and in matrix form as

(gϵf ) =

 0 0 1
0 ϵ 0
1 0 f

 with inverse (gϵf )
−1 =

 −f 0 1
0 ϵ 0
1 0 0

(2)

for some function f(x, y, z). If the function f depends only on y and z coordi-
nates

(
f = f(y, z)

)
the structures gϵf is called Strict Walker.

When ϵ = 1
(
resp. ϵ = −1

)
the Walker manifold has signature (2, 1)

(
resp.

(1, 2)
)
therefore is Lorentzian in both cases.

2.2. Curvatures of a 3-dimensional Walker manifold

Let M be a manifold equipped with a 3-dimensional Walker structure gϵf
(as in (1)). The Levi-Civita connection of gϵf is given by:

∇∂x
∂z =

1

2
fx∂x, ∇∂y

∂z =
1

2
fy∂x,

∇∂z
∂z =

1

2
(ffx + fz)∂x − ϵ

2
fy∂y −

1

2
fx∂z,(3)

where ∂x, ∂y and ∂z are the coordinate vector fields ∂
∂x
, ∂
∂y

and ∂
∂z
, respectively.

Hence, if (M, gϵf ) is a strict Walker manifolds i.e., f(x, y, z) = f(y, z), then the
associated Levi-Civita connection satisfies

∇∂y
∂z =

1

2
fy∂x, ∇∂z

∂z =
1

2
fz∂x − ϵ

2
fy∂y.(4)

The non-zero components of the curvature tensor of (M, gϵf ) are given by

R(∂x, ∂z)∂x =
1

2
fxx∂x, R(∂x, ∂z)∂y =

1

2
fxy∂x, R(∂y, ∂z)∂y =

1

2
fyy∂x,

R(∂x, ∂z)∂z =
1

2
ffxx∂x − ϵ

2
ffxy∂y −

1

2
ffxx∂z, R(∂y, ∂z)∂x =

1

2
fxy∂x,

R(∂y, ∂z)∂z =
1

2
ffxy∂x − ϵ

2
ffyy∂y −

1

2
ffxy∂z.

Note that the existence of a null parallel vector field (i.e f = f(y, z)) simplifies
the non-zero components of the Christoffel symbols and the curvature tensor
of the metric gϵf as follows:

Γ1
23 = Γ1

32 =
1

2
fy , Γ1

33 =
1

2
fz , Γ2

33 = − ϵ

2
fy

and respectively

R(∂y, ∂z)∂y =
1

2
ffyy∂x, R(∂y, ∂z)∂z = − ϵ

2
ffyy∂y.

Let U and V be two vector fields over (M, gϵf ). The vector (cross) product of
U and V in TM with respect to the metric gϵf is the vector field denoted by
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U × V and defined by

gϵf (U × V,W ) = det(U, V,W ) ∀ W ∈ TM,(5)

where det(U, V,W ) is the determinant function associated to the canonical basis
of R3. So by setting U = (Ux, Uy, Uz) and V = (V x, V y, V z) with respect to
the adapted basis (∂x, ∂y, ∂z) and using (5), we obtain:

U × V = (UxV y − UyV x − f(UyV z − UzV y),−ϵ(UxV z − UzV x), UyV z − UzV y) .

3. Geometry of Curves in 3-dimensional Walker manifold

In this section, we present some of the geometric quantities specifically
attached to curves in a 3-dimensional Walker manifold (M, gϵf ) with adapted

coordinates (x, y, z) so that the metric has the form (1).
Let I be an open interval in R and γ : u ∈ I 7−→ γ(u) ∈ (M, gϵf ) a unit

speed curve in (M, gϵf ). with nowhere vanishing curvature function κ. Recall
that the function κ measures the potential of a curve to bend from a straight
line in the manifold.

For each u ∈ I, if we write γ(u) =
(
x(u), y(u), z(u)

)
we have

γ′(u) =
d

du
γ(u) =

dx

du

∂

∂x
+

dy

du

∂

∂y
+

dz

du

∂

∂z
= x′(u)∂x + y′(u)∂y + z′(u)∂z.

Denoting by T the (unit) tangent vector (field) to γ, the vector (field)

N =
1

κ

d

du
T (resp. B = T ×N ) is the normal (resp. binormal) vector (field)

to γ. The family (T,N,B) is the Frenet frame along the curve γ.
In the sequel, the numbers ε1 = gϵf (T, T ) ; ε2 = gϵf (N,N) and ε3 = gϵf (B,B)

will denote the causal character of T , N and B respectively and the following
hold:

gϵf (T,N) = gϵf (T,B) = gϵf (N,B) = 0,

T = ε1 N ×B, N = ε2 B × T, B = ε3 T ×N.

Definition 3.1.
Let γ : I −→ (M, gϵf ) be a curve such that γ′(u) × γ(u) ̸= 0 for all u ∈ I.

The torsion of γ at γ(u) (at time u) is given by:

τ =
det
(
γ′(u), γ′′(u), γ′′′(u)

)
∥γ′(u)× γ′′(u)∥

.

The evolution of the Frenet frame along the curve γ is given by the Frenet
formulas:  ∇TT = ε2κN

∇TN = −ε1κT + ε3τB
∇TB = −ε2τN

,(6)
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where κ and τ are respectively the curvature and the torsion of the curve γ.
This can be written as:

d

du

 T
N
B

 =

 0 ε2κ 0
−ε1κ 0 ε3τ
0 −ε2τ 0

 T
N
B

 .(7)

.

4. Geometry of surfaces in a 3-dimensional Walker manifold

In this section we study the differential geometry of surfaces in a Walker
manifold. Let U be an open subset of the plane R2 satisfying this interval
condition: horizontal or vertical lines intersect U in intervals (if at all).

A two-parameter map is a smooth map φ : U −→ M . Thus φ is composed
of two interwoven families of parameter curves:

1. the u-parameter curves v = v0 of φ is u 7−→ φ(u, v0),
2. the v-parameter curves u = u0 of φ is v 7−→ φ(u0, v).

The partial velocities φu = dφ(∂u) and φv = dφ(∂v) are vector fields on φ.
Evidently φu(u0, v0) is the velocity vector at u0 of the u-parameter curve v =
v0, and symmetrically for φv(u0, v0). If φ lies in the domain of a coordinate
system (x1, · · · , xn), then its coordinate functions xi ◦ φ (1 ⩽ i ⩽ n) are real-
valued functions on U and

φu =
∑
i

∂xi

∂u
∂xi

φv =
∑
i

∂xi

∂v
∂xi .

So far, M could be a smooth manifold; assume it is pseudo-Riemannian. If Z
is a smooth vector field on φ, its partial covariant derivatives are:

Zu = ∇ ∂
∂u

Z, the covariant derivative of Z along the u-parameter curves,

Zv = ∇ ∂
∂v
Z, the covariant derivative of Z along the v-parameter curves.

Explicitly, Zu(u0, v0) is the covariant derivative at u0 of the vector field
u 7−→ Z(u, v0) on the curve u 7→ φ(u, v0). In terms of coordinates, Z =∑
i

Zi∂xi , where each Zi = Z(xi) is a real valued function. Then

Zu =
∑
k

∂Zk

∂u
+
∑
i,j

Γk
ijZ

i ∂x
j

∂u

 ∂xk .(8)

In the special case Z = φu, the derivative Zu = φuu gives the accelerations of
the u-parameter curves, while φvv gives the v-parameter accelerations. With
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coordinate notation as above, we have:

φuv =
∑
k

 ∂2xk

∂v∂u
+
∑
i,j

Γk
ij

∂xi

∂u

∂xj

∂v

 ∂xk .(9)

Now we will assume that φ is an isometric immersion. The first fundamental
form of the immersion φ is given by:

E = gϵf (φu, φu)

F = gϵf (φu, φv)

G = gϵf (φv, φv) .
(10)

The coefficients of the second fundamental form of φ are
L = ε4g

ϵ
f (φuu,N )

M = ε4g
ϵ
f (φuv,N )

P = ε4g
ϵ
f (φvv,N )

,(11)

where ε4 = gϵf (N ,N ) denotes the sign of the unit normal N along φ.
To end this section, we recall the two most important curvatures functions

for submanifolds: the mean curvature and the Gauss curvature. The mean
curvature is given by

H =
ε4
2

(LG− 2MF + PE

EG− F 2

)
.(12)

As a submanifolds of (M, gϵf ), the geometric support Σ of the immersion φ :

U → (M, gϵf ), satisfies the Gauss equation. That is, if ∂u and ∂v span the

tangent space to Σ at the point (u, v), then the sectional curvature K(∂u, ∂v)
of Σ and the sectional curvature K(∂u, ∂v) of (M, gϵf ) are related by

K(∂u, ∂v) = K(∂u, ∂v) + ε1
LN −M2

EG− F 2
.(13)

5. Geometry of Normal and binormal surfaces through a curve

Loosely speaking, the ruled surface formed by the line moving with the
normal/binormal direction and base curve is a normal/binormal surface. In-
troduced by Hellmuth Kneser [11] to prove the prime decomposition theorem
for 3-dimensional manifolds, the concept of normal surface was extend and
refined by Wolfgang Haken [8] to create normal surface theory which is the
backbone of many algorithms in 3-dimensional manifolds theory.

Besides, binormal motion has received many authors attention for used
made of it (see e.g. [7, 2]). In 1972, Hasimoto derived the celebrated non-
linear Schrödinger equation in an approximation to the self-induced motion of
a thin, isolated, vortex filament travelling without stretching in an incompress-
ible fluid.
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Our daily lives compound surfaces as its part. Some of them can be defined
by integrable equations. Known as the smoke ring equation or localized induc-
tion equation of a regular space curve, Hasimoto surfaces are some example.
Because the normal/binormal line moves on the curve, this surface is called the
normal/binormal motion of the curve of constant curvature or torsion, respec-
tively, and is shown to lead to integrable extensions of the Dym and classical
sine–Gordon equations.

In this section we study the geometry of normal and binormal surfaces
through a given curve in (M, gϵf ). Let γ be a curve on a Walker 3-dimensional

manifold (M, gϵf ); denote by (T,N,B) the Frenet-Serret frame along γ and by
u its arc-length parameter.

Definition 5.1. A surface S passing through a curve γ is a normal (resp.
binormal) surface of the curve γ if S can be parameterized by

χ(u, v) = γ(u) + vN(u) (resp. χ(u, v) = γ(u) + vB(u)),(14)

where N (resp. B) is the normal (resp. binormal) vector to γ at time u.

5.1. Geometry of a normal surface

We compute some of the geometric quantities of the normal surface through
a curve and study some of its properties.

5.1.1. The fundamental forms of a normal surface. To measure the length of
curve or to compute the distance between two points on a surface, one uses the
first fundamental form, while quantifying how far the surface bends from the
plane, the curvatures are the tools.

Theorem 5.2. The first and the second fundamental forms of a normal
surface χ through a curve γ in a 3-dimensional Walker manifold are respectively
given by

I =

(
(1− ε2κv)

2 + ε3(τv)
2 0

0 ε2

)

and

II =
1√

ε1(τv)2 + ε3(1− ε1κv)2

 −ε3v

(
ε1τv

dκ

du
+ (1− ε2κv)

dτ

du

)
−ε3τ

2

−ε3τ

2
ε1ε3τvA+ C(1− ε1κv)

 ,
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where A = cT1 + ϵbT2 + (a + fc)T3 and C = cB1 + ϵbN2 + (a + fc)N3 with
the coefficients

a = N1(N1x +
1

2
N3fx) +N2(N1y +

1

2
N3fy) +N3

(
N1z +

1

2
N3(ffx + fz)

)
b = N1N2x +N2N2y +N3(N2z −

ϵ

2
N3fy)

c = N1N3x +N2N3y +N3(N3z −
1

2
N3fx).

In the particular case of strict Walker metric, the coefficients a, b and c reduce
to

a = N1N1x +N2N1y +N3N1z +
1

2
N2N3fy +

1

2
N2

3 fz

b = N1N2x +N2N2y +N3(N2z −
ϵ

2
N3fy),

c = N1N3x +N2N3y +N3N3z.

Proof. Let (u, v) ∈ U and consider χ(u, v) = γ(u) + vN(u) where N is the
normal vector to γ at u. From the Frenet formulas in (6) we obtain

χu =
∂

∂u
χ(u, v) = T (u) + v(−ε2κT − ε3τB) = (1− ε2κv)T (u)− ε3τvB(u)

χv =
∂

∂v
χ(u, v) = N(u).

(15)

Then we have the coefficients of the first fundamental form

E = gϵf

(
(1− ε2κv)T (u)− ε3τvB(u), (1− ε2κv)T (u)− ε3τvB(u)

)
= ε1(1− ε2κv)

2 + ε3(τv)
2,(16)

F = gϵf (χu, χv) = 0,(17)

G = gϵf (N(u), N(u)) = ε2.(18)

Therefore, the first fundamental form is given by:

I = Edu2 + Fdu · dv +Gdv2 =
[
(1− ε2κv)

2 + ε3(τv)
2
]
du2 + ε2dv

2.(19)

In order to compute the second fundamental form, we need the second order
derivative and the normal to the surface χ. To this end, let us express T , N ,
and B in the basis (∂x, ∂y, ∂z) T = T1∂x + T2∂y + T3∂z

N = N1∂x +N2∂y +N3∂z
B = B1∂x +B2∂y +B3∂z

,

and write

∇χvχv = ∇NN = a∂x + b∂y + c∂z.
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One easily gets

a = N1(N1x +
1

2
N3fx) +N2(N1y +

1

2
N3fy) +N3

(
N1z +

1

2
N3(ffx + fz)

)
,

b = N1N2x +N2N2y +N3(N2z +
ϵ

2
N3fy),

c = N1N3x +N2N3y +N3(N3z −
ϵ

2
N3fx).

If the metric is strict Walker, we get

a = N1N1x +N2N1y +N3N1z +
1

2
N2N3fy +

1

2
N2

3 fz,

b = N1N2x +N2N2y +N3N2z +
ϵ

2
N2

3 fy,

c = N1N3x +N2N3y +N3N3z.

Therefore in the Frenet frame (T,N,B), the second order derivatives of χ are
expressed as follow:

χuu =
∂2

∂u2
χ(u, v) = −ε2v

dκ

du
T (u) +

(
(1− ε2κv)ε2κ− ε2ε3τ

2v
)
N(u)− ε3v

dτ

du
B(u)

χuv =
∂

∂v
χu =

∂

∂u
χv =

∂2

∂u∂v
χ(u, v) = −ε1κT (u)− ε3τB(u)

χvv =
∂2

∂v2
χ(u, v) = AT (u) + BN(u) + CB(u)

,

where  A = ε1
(
cT1 + ϵbT2 + (a+ fc)T3

)
B = ε2

(
cN1 + ϵbN2 + (a+ fc)N3

)
C = ε3

(
cB1 + ϵbB2 + (a+ fc)B3

)
and the unit normal vector to χ:

N =
χu × χv

∥χu × χv∥
=

1√
ε1(τv)2 + ε3(1− ε1κv)2

(
ε1ε3τvT (u) + ε3(1− ε1κv)B(u)

)
.

Thus we compute the coefficients of the second fundamental form to obtain:

L = gϵf (N ,Xuu) = − ε3v√
ε1(τv)2 + ε3(1− ε1κv)2

(
ε1τv

dκ

du
+ (1− ε1κv)

dτ

du

)
,

M = gϵf (N ,Xuv) = − ε3τ√
ε1(τv)2 + ε3(1− ε1κv)2

,

P = gϵf (N ,Xvv) =
1√

ε1(τv)2 + ε3(1− ε1κv)2

(
ε3τvA+ (1− ε1κv)C

)
.
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5.1.2. Curvatures of a normal surface.

We give, hereafter, the curvatures of the normal surface through a curve in
a 3-dimensional Walker manifold.

Theorem 5.3. Let γ be a curve in a 3-dimensional Walker manifold and χ
be a normal surface passing through γ. The principles curvature, the Gaussian
curvature and the mean curvature of χ are given by:

ki =
1

2
√
ε1(τv)2 + ε3(1− ε1κv)2

(
β − α+

√
(α+ β)2 + τ2

)
∀ i = 1, 2,

H =
−1

2
√
ε1(τv)2 + ε3(1− ε1κv)2

(
ε3v

(
ε1τv

dκ

du
+ (1− ε1κv)

dτ

du

)
− ε1ε3τvA− C(1− ε1κv)

)
,

K = − 4αβ + τ2

ε1(τv)2 + ε3(1− ε1κv)2
,

where α = ε3v

(
ε1τv

dκ

du
+ (1− ε1κv)

dτ

du

)
and β = ε1ε3τvA+ C(1− ε1κv).

Proof. Let us write the second fundamental form

II =
1

δ

 −α −ε3τ

2
−ε3τ

2
β


with δ =

√
ε1(τv)2 + ε3(1− ε1κv)2 and α, β as expressed in Theorem 5.3. One

obtains

PII(λ) = det(II − λI2) = 0 ⇐⇒ λ2 +
β − α

δ
λ− 4αβ + τ2

4δ2
= 0,

from which we deduce the principles curvature that give the mean and Gaussian
curvature.

Remark 5.4. A normal surface passing through a given curve in a 3-
dimensional Walker manifold is umbilical.

Corollary 5.5. Let γ be a planar curve (everywhere vanishing torsion
τ = 0) in a 3-dimensional Walker manifold. Then the normal surface pass-
ing through γ is umbilical, minimal and flat. In other words, the principles
curvature, the Gaussian curvature and the mean curvature of χ are all zero

Proof. It is easy to find that when τ = 0, all the principal curvatures vanish.

5.2. Geometry of binormal surface

In this subsection, we compute the geometric invariants of the binormal
surface through a curve and study some of its properties.
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5.2.1. The fundamental forms of a binormal surface. Likely for the normal
surface, we compute the first fundamental form which is used to measure dis-
tance between the points on the surface and the second fundamental form to
appreciate how much the surface bends from the plane.

Theorem 5.6. The first and the second fundamental forms of a binormal
surface χ through a curve γ in a 3-dimensional Walker manifold are respectively
represented by the following matrices:

I =

(
ε1 + (τv)2ε3 0

0 ε3

)
(20)

and

II =
−1√

|ε1(τv)2 + ε2|

 ε1κ(τv)
2 + ε2

(
κ− v

dτ

du

)
−ε2τ

2

−ε2τ

2
ε2τvA+ ε2ε3B

 .(21)

Proof. Using the Frenet formulas in (6) we obtain
χu =

∂

∂u
χ(u, v) = T (u) + v d

duB(u) = T (u)− ε2vτN(u)

χv =
∂

∂v
χ(u, v) = B(u).

(22)

Then the coefficients of the first fundamental form are

E = ε1 + ε2(τv)
2, F = 0 and G = ε3.

Thus the first fundamental form is : g(u, v) = (ε1 + ε2(τv)
2)du2 + ε3dv

2.

In order to compute the second fundamental form, one needs the unit normal
vector to χ and the second order derivative. The unit normal vector to χ is:

N =
χu × χv

∥χu × χv∥
=

1√
|ε1(τv)2 + ε2|

(
− ε1ε2τvT (u)− ε2N(u)

)
.(23)

For the second order derivatives, let us expressed the Frenet frame’s vectors in
the basis (∂x, ∂y, ∂z) T = T1∂x + T2∂y + T3∂z

N = N1∂x +N2∂y +N3∂z
B = B1∂x +B2∂y +B3∂z

,

and write

∇χvχv = ∇BB = a∂x + b∂y + c∂z.
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The coefficients a, b and c are given by

a = B1(B1x +
1

2
B3fx) +B2(B1y +

1

2
B3fy) +B3

(
B1z +

1

2
B3(ffx + fz)

)
b = B1B2x +B2B2y +B3(B2z −

ϵ

2
B3fy)

c = B1B3x +B2B3y +B3(B3z −
1

2
B3fx)

and in the strict Walker structure by

a = B1B1x +B2B1y +B3B1z +
1

2
B2B3fy +

1

2
B2

3fz

b = B1B2x +B2B2y +B3(B2z −
ϵ

2
B3fy)

c = B1B3x +B2B3y +B3B3z.

Therefore, in the Frenet frame, the second order derivatives of χ are:
χuu = ε1ε2vκτT (u) + ε2

(
κ− v dτ

du

)
N(u)− ε2ε3vτ

2B(u)

χuv = −ε2τN(u)

χvv = AT (u) + BN(u) + CB(u),

(24)

where  A = ε1
(
cT1 + ϵbT2 + (a+ cf)T3

)
B = ε2

(
cN1 + ϵbN2 + (a+ cf)N3

)
C = ε3

(
cB1 + ϵbB2 + (a+ cf)B3

)
.

Thus the coefficients of the second fundamental form are given by:

L = gϵf (N ,Xuu) =
−1√

ε1(τv)2 + ε2

(
ε1κ(τv)

2 + ε2(κ− v
dτ

du
)

)
,

M = gϵf (N ,Xuv) =
ε2τ√

ε1(τv)2 + ε2
,

P = gϵf (N ,Xvv) =
−1√

ε1(τv)2 + ε2

(
ε2τvA+ ε2ε3B

)
.

5.2.2. Curvatures. We compute the curvature of the binormal surface through
a curve in a 3-dimensional Walker manifold.

Theorem 5.7. Let γ be a curve in a 3-dimensional Walker manifold and χ
be a binormal surface through γ. The principles curvature, the mean curvature
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and the Gaussian curvature of χ are respectively given by:

ki =
1

2
√
ε1(τv)2 + ε2

(
− α− β ±

√
(α+ β)2 + τ2

)
∀ i = 1, 2,

H =
−1

2
√
ε1(τv)2 + ε2

(
ε1κ(τv)

2 + ε2κ− ε2v
dτ

du
+ ε2τvA+ ε1ε2B

)
,

K =
−τ2

4(ε1(τv)2 + ε2)
,

where

α = ε1κ(τv)
2 + ε2(κ− v

dτ

du
) and β = ε2τvA+ ε2ε3B

A = ε1
(
cT1 + ϵbT2 + (a+ cf)T3

)
and B = ε2

(
cN1 + ϵbN2 + (a+ cf)N3

)
.

Proof. Putting the second fundamental form

II =
1

δ

 −α
ε2τ

2ε2τ

2
−β


with δ =

√
ε1(τv)2 + ε2 and α, β as in Theorem 5.7, one obtains

PII(λ) = det(II − λI2) = 0 ⇐⇒ λ2 +
α+ β

δ
λ+

4αβ − τ2

4δ2
= 0.

from which we deduce the principles curvature that give the mean and Gaussian
curvature.

Proposition 5.8. Let χ be a binormal surface through a curve γ (with
constant torsion) in a 3-dimensional Walker manifold. The principles curvature,
the Gaussian and the mean curvature of χ are given by:

ki =
1

2
√
ε1(τv)2 + ε2

(
− α− β ±

√
(α+ β)2 + τ2

)
∀ i = 1, 2,

H =
−1

2
√
ε1(τv)2 + ε2

(
ε1κ(τv)

2 + ε2κ+ ε2τvA+ ε1ε2B
)
,

K =
−τ2

4(ε1(τv)2 + ε2)
,

where

α = ε1κ(τv)
2 + ε2κ and β = ε2τvA+ ε2ε3B

A = ε1
(
cT1 + ϵbT2 + (a+ cf)T3

)
and B = ε2

(
cN1 + ϵbN2 + (a+ cf)N3

)
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Abidjan, Côte d’Ivoire.
E–mail: moussa.koivogui@esatic.edu.ci


