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ON A CERTAIN GENERALIZATION OF POLYGROUPS BY
E-POLYGROUPS

AKBAR DEHGHAN NEZHAD AND BIJAN DAvvaz*

Abstract. In this paper, first we generalize the notion of polygroups and
weak polygroups by the notion of E-polygroups and weak E-polygroups.
Then, we study the isomorphism theorems on E-polygroups and weak
FE-polygroups. Finally, the fundamental relations on weak E-polygroups
are investigated.

1. Introduction

Algebraic hyperstructures were introduced by a French mathematician, F.
Marty [11] in 1934. Afterwards, this new idea was expanded rapidly and showed
himself as a new view on sets. In this context, hundreds papers and several
books have been written on this topic. One of the first books, dedicated es-
pecially to hypergroups is “Prolegomena of Hypergroup Theory”, written by
P. Corsini in 1993 [3]. Another book on “Hyperstructures and Their Repre-
sentations” was published one year later [14]. Another book on these topics is
“Applications of Hyperstructure Theory”, written by P. Corsini and V. Leore-
anu [4] and “Polygroup Theory and Related Systems” wrtten by B. Davvaz [6],
also see [1, 10, 12, 13]. Algebraic hyperstructure theory has also a multiplicity
of applications to other sciences, such as geometry, graphs and hypergraphs,
binary relations, lattices, groups, relation algebras, artificial intelligence, prob-
abilities and so on, for more recent details see [7, 8, 9].

In the present study, we aimed to extend algebraic hyperstructures such as
polygroups and weak polygroups by the concepts of E-polygroups and weak E-
polygroups, where the non-empty subset E plays a similar role of the identity.
Besides mathematical applications, this approach may have of importance in
physics and other sciences.

After providing some interesting examples, we investigate the characteriza-
tions of these concepts and address which properties and constructions of usual
polygroups and weak polygroups still remain true for E-polygroups and weak
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FE-polygroups. In particular, E-normal subpolygroups and the extensions of
weak F-polygroups are discussed. We also study isomorphism of E-polygroups
and conditions under which isomorphism theorems hold. Finally, the funda-
mental relation on a weak E-polygroup are defined as the smallest equivalence
relation turning it into a group, and some results are obtained.

2. Preliminaries and notations

In this section, we summarize the general preliminary definitions of algebraic
hyperstructures and we exclude special cases.

Definition 2.1. Let H be a non-empty set and let P*(H) be the set of
all non-empty subsets of H, we define the concepts of hyperoperation, semi-
hypergroup, hypergroup, H,-group and regular hypergroup as following:

(i) A hyperoperation on H is defined as a map ® : H x H — P*(H)
and the couple (H,®) is called a hypergroupoid. If A and B are non-
empty subsets of H, then we denote A® B =J,ca pepa®b, v®@A=
{r}® A and Az =A® {z}, where x € H.

(ii) A hypergroupoid (H,®) is called a semi-hypergroup if we have (x @ y) ®
2=z ® (yQ z2) for all x,y, z of H, which means

U uURz = U Q.

UETRY vEY®Z
(iii) We say that a semi-hypergroup (H,®) is a hypergroup if we have x @ H =
H®x=H forallx € H.
A hypergroupoid (H, ®) is an H,,-group, if for all x,y, z € H, the following
conditions hold:

1) 2@ (y®z)N(zQy)®z+# 0 (weak associativity),

2) x® H=H ®x = H (reproduction axiom).

v) A hypergroupoid (H,®) is said to be commutative (or abelian ) if

ry=y®u forall z,y € H.

(v) A hypergroup (H,®) is called regular if it has at least an identity, that is
an element e of H, such that for allx € H,z € eQxNx®e and moreover
each element has at least one inverse, that is if x € H, then there exists
2’ € H such that e € x @ ' N2’ ® . The set of all identities of H is
denoted by E(H)

(vi) If z € H,iy(z) = {a' : e € 2’ @ x} is the set of all left inverses of x in H
(resp. ir(x)) and i(x) = i;(x) N i, (z).

(vi) A regular hypergroup (H,®) is called reversible if for all (z;y;a) € H3:
(1) y € a ® x, then there exists a’ € i(a) such that x € o’ Ny;

(2) y € x ® a, then there exists a” € i(a) such that © € y @ a”.

Definition 2.2. Let (H,®) be an H,-group and K be a non-empty subset
of H. Then K is called an H,-subgroup of H if (K,®) is an H,-group.
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Definition 2.3. Let (H,®) be a hypergroup, K a nonempty subset of H.
We say that K is invertible to the left if the implicationy € K®@r — = € KQy
valid. We say K is invertible if K is invertible to the right and to the left.

Proposition 2.4. [?]. If (H,®) is a hypergroup such that E(H) # ¢; and
K is an invertible subhypergroup of it, then E(H) C K.

Proof. Suppose that e € E(H). Since K Ce® K, wehavee € K@ K C K,
because K is an invertible subhypergroup. O

Definition 2.5. Let (Hq,-), (H2,*) be two H,-groups. A map f : Hy — Hs
is called an H,,-homomorphism or a weak homomorphism if

flx-y)Nfz)*fly) #0 forall x,y € Hy.

f is called an inclusion homomorphism if
flz-y) C f(z)* f(y) forall z,y € Hy.

Finally, f is called a strong homomorphism if
f(z-y) = f(2)* f(y) for all 2,y € H.

If f is onto, one to one and strong homomorphism, then it is called an iso-
morphism. In this case, we write Hy = Hy. Moreover, if the domain and the
range of f are the same H,-group, then the isomorphism is called an automor-
phism. We can easily verify that the set of all automorphisms of H, denoted
by AutH, is a group.

Definition 2.6. [2] A multivalued system (P,o,e,”'), where e € P, = :
P — P, o: Px P — P*(P) is called a polygroup (a weak polygroup) if the
following axioms hold for all x,y,z € P;
D) (zoy)oz=zo(yoz), (woy)oznuol(yos) £0),
IIH)zoe=x=cou,
II) x € yoz impliesy € xoz ' and z € y~ Lo,

Example 2.7. Consider P = {e,1,2,3} and define o on P with help of the
following table;

o ‘ e 1 2 3
el|e 1 2 3
1|1 1 {e,1,2,3} 3
212 {e1,2} 2 {2,3}
313 {1,3} 3 {e,1,2,3}

Then (P,o,e,” '), where 71 = x, for every x € P, is a polygroup.
A polygroup is a special case of a hypergroup.

Example 2.8. Consider P = {e,1,2,3} and define o on P with help of the
following table;
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ole 1 2 3
ele 1 2 3
111 {e1} 3 2
212 3 {e2} 1
313 2 1 {e, 3}

Then (P,o,e,~'), where x~! = x, for every x € P, is a weak polygroup which
is not a polygroup. Indeed, we have (102)03 =303 ={e,3} and10(203) =
102 = {e,1}. Therefore o is not associative.

Example 2.9. A natural example of a polygroup is the system G//H of
all double cosets of a group G modulo a subgroup H. Namely, the polygroup
G//H =< {HgH : g € G},0,H,”' > where (HgH) o (Hg'H) = {Hghg'H :
he H} and (HgH)™' = Hg~'H.

3. E-polygroups

Definition 3.1. A multivalued system < P,o, E,”7 >, where ) # E C P,
—J . P — P is unitary operation on P and o : Px P — P*(P) a hyperoperation
on P, is called an E-polygroup if the following axioms hold for all x,y,z € P;

(IPy) (zoy)oz==x0(yoz);
(IPy) z€exoENEou;
(IP3) 2 € yoz impliesy € xoz"7 and z € y~7 o x.

If instead of 1Py, a multivalued system < P, o, E, =/ > satisfies the weaker
condition

(IP}) (zoy)ozNuo(yoz)#0,
it is called a weak E-polygroup.

Obviously, any weak E-polygroup is an E-polygroup.

Example 3.2. Consider P = {e,¢’,1,2,3}, E = {e,e } and define o5 on P
with help of the following table;

’

og e e 1 2 3
ele ¢ 1 2 3

e le € 1 2 3
111 1 1 {e,1,2,3} 3
212 2 {el,2} 2 {2,3}
313 3 {1,3} 3 {e,1,2,3}

Then (P, 09, E,~7), where a=’ = a, for every a € P, is a polygroup.

Proposition 3.3. For every element of x of any weak E-polygroup <
Po,E > onehaszox ' NE#0 andx=’ oxNE # (.
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Proof. By IP3, for every & € P there exists some e € E such that x € eox,
and by IP3, we have e € z ox~/. Thus, e € (xox~7) N E # (). Likewise, one
can prove (z=7 oz)NE # (). O

Example 3.4. Naturally, every polygroup (P, o,e,~t) is an E-polygroup
(P,o, E,=1) by setting E = {e}. More generally, one can let E be any subset
of P containing e.

Example 3.5. Assume that (G, -) is an abelian group with the identity e.
Let E be any subset of G with more than one element such that e € E and E
is closed under inversion. We define the hyperoperation ® as follows,

( ey B ifote yte
IGy_{E, ifr=eory=e

The multivalued system < G,®, E,”’ > is a E-polygroup, where —J denotes
the inverse operation of (G, -).

Example 3.6. A projective geometry is an incidence system (P, L, R) con-
sisting of a set of points P, a set of lines L and incidence relation R C P x L
satisfying the following axiom:

1. Any line contains at least three points;
2. Two distinct points a, b are contained in a unique line denoted by L(a,b);
3. If a,b,c,d are distinct points and L(a,b) intersects L(c,d), then L(a,c)
must intersect L(b,d) (Pasch axiom).
Let P’ = PUFE, where E is a set with PN E = ¢ and define
Fora#be P, aob= L(a,b) \ {a,b};
For a € P, if any line contains exactly three points, put a o a = F,
otherwise a o a = {a} U E;
Fora€ P', Eoa=aoFE = {a}, where a=’/ = a.
Then it is easily verified that (P’ o, E,~7) is a weak E-polygroup.
Definition 3.7. Let < P,o, E,”7 > be an E-polygroup (a weak E-polygroup)
and E C K C P. We say that a subset K of P is an E-subpolygroup (a weak
E-subpolygroup), if the multivalued system < K, o, E,”7 > be an E-polygroup
(a weak E-polygroup).

Lemma 3.8. Let < P,o,E,”/ > be an E-polygroup (weak E-polygroup)
and E C K C P. Then K is an E-subpolygroup (weak E-subpolygroup) of P
if and only if (i) x oy C K for any x,y € K, (ii) v~/ € K for any x € K.

Proof. Tt is straightforward. O

Definition 3.9. An E-subpolygroup N of an E-polygroup P is E-normal
in P if and only ifa='Na C N, for every a € P.

It is easy to prove the following corollaries.
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Corollary 3.10. Let N be an E-normal in P. Then
1. Na=aN, for all a € P;

2. (Na)(Nb) = Nab, for all a,b € P;

3. Na = Nb, for all b € Na.

Corollary 3.11. Let K and N be two E-subpolygroups in P with N E-
normal in P. Then
NNK is an E-normal in K;
NK = KN is an E-subpolygroup of P;
N is an E-normal in NK.

Definition 3.12. If N is an E-normal in P, then we define the relation
r =y (mod N) if and only if zy=/ NN # (. This relation is denoted by
xNpy.

Lemma 3.13. The relation Np is an equivalence relation on week FE-
polygroups.

Proof. Since E C -2~/ NN for all € P; then zNpzx, i.e., Np is reflexive.
The proof of symmetric and transitivity of the relation of N, is similar to
Lemma 2.4. in [?]. O

Example 3.14. Let (G, ) be a group and 6 an equivalence on G. Let 0[z]
be the equivalence class of the element x € G. Suppose that E = 0e] and
27 =271, It is not difficult to see that the hyperstructure < G,®, E,”7 > is
a weak E-polygroup, when the hyperoperation ® is defined as follows:

©:HxH—P(P), by z0y={0[z]|z € 0z] - 0y}

Proposition 3.15. Let (G,-) be a group and 6 an equivalence on G such
that
(i) 20y and y € E implies x € E,
(i) zfy implies =7 0y=7.
Let 6(x) be an equivalence class of the element x € G. If G/0 = {0(z)|z € G},
then < G/0,®,0(E),”” > is a weak E-polygroup, where the hyperoperation ®
is defined as follows:

®:G/0 x G0 — P*(G/6)

0(z) ©0(y) = {0(2)|z € 0(x) - 6(y)},
and 0(z)~7 = 0(xz=7).

Proof. For all z,y,z € G, we have - (y - z) € 0(x) ® (0(y) ® 6(2)) and
(x-y) -z € (0(x) ©0(y)) ®0(2), therefore © is week associative. It is easy to see
that for any 6(z) € G/0, 0(x) € (0(z)®0(E))N(O(E)>0(x)). Now, we show that
0(z) € 0(z) ®0(y) implies O(x) € 8(z) ©0(y~7) and 0(y) € O(z~")®6(z). Since
0(z) = 6(a) for some a € 6(z) - 6(y), so there exist b € O(z) and ¢ € §(y) such
that a = b-c, so b = a-c~7 which implies that 6(b) = 0(a-c~7) € §(a) ©0(c™7).
Hence 0(z) € 6(2)©0(y~7). By the similar way, we obtain 6(y) € §(z=7)®6(2).
Therefore < G/60,,0(E),”’ > is a weak E-polygroup. O
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Theorem 3.16. Let A =< A,-,E,”/ > and B =< B,-,E,~7 > be two
weak E-polygroups whose elements have been renamed so that AN B = E,
where E is identity of A and B. If E C x -~ ! for any © € P. Then the new
system A[B] =< M, x, E,~7 >, which is called the extension of A by B is a
weak E-polygroup.

Proof. The second condition of Definition 3.1, is clear. It is enough to check
the conditions (IP;1) and (IP3) of Definition 3.1. Without loss of generally, we
may assume z,y, 2z ¢ I and not elements belong to A. Note that

(1) fue Bandv € A, then uxv =v*u=u.

If exactly one of z,y, z belongs to B, then (1) implies that both sides of
(IP1) equal the element in {z,y, 2z} N B. If exactly two of z,y, z belong to B,
say u and v, then (1) implies that both sides of (IP;) equal u x v. We assume
that z,y,z € B — F and show that

(2) u € (z*y) * z implies u € z * (y * 2).

Ifué¢ A then u € w* z for some w € x xy. Now, if w ¢ A, w € z-y and
u€cw-zsou € (xy)z =x(yz) (in B) Cax*x(y*xz). Also,if we A,u e wxz =z
(sou =z2)and E C zy. Thus, u = z € (zy)z = z(yz) C = * (y * z). Now,
suppose that u € A. Then 277/ € zxy, 27/ ¢ Aso 277 € zy (in B), so
E C (zy)z = z(yz). Thus, 7 € yz C y* 2 and hence u € A C x * (y * 2).

The proof of the opposite inclusion is similar to (2).

The condition (IP3) is clear if z,y,z € A. Since x € B — E implies y or z
belongs to B— E and « € A implies z € B — E, we may assume at least two of
x,y,z belong to B — E. On the other hand, if z,y,z € B— FE, then z € y* 2
implies © € y - z (in B) from which (IP3) follows. Therefore, we may assume
exactly two of z,y, z belong to B — I. This reduced to two cases:

(3) zx € y*z, where z,y € B— F and z € A.

By (1), yxz=ysox =y, thusy =z = z* 2z~
zeAQm_J*m:y_J*x.

(4) z € y* z where x € A and y,z € B— E.

In this case y = 2~/ so the desired conclusion follows using (1). This
completes the proof of (IP3) and hence the theorem. O

7 using (1) again and

The equivalence relation 6 on a weak E-polygroup P is called a full conjugation
on P if

1. z0y implies z~70y~7,

2. z € z-y and z1 0z imply 21 € z1-y; for some x7 and y;, where 0(x1) = 0(x)

and 6(y1) = 6(y).

The collection of all #-classes, with the induced operation from P, forms a weak
E-polygroup.

Corollary 3.17. Let M be a weak E-polygroup, then 6 is full conjugation
on P if and only if (i) (0(z))~7 = 0(==7); (ii) 0(0(x)y) = 0(x)0(y).

Definition 3.18. Let A =< A,-,E;,77> and B =< B,*,Fs,”7 > be
two weak Fy-polygroup and weak Fs-polygroup. Let f be a mapping from
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A into B, such that f(Fy) = E5. Then f is called a strong homomorphism, if
flx-y) = f(x)* f(y), for all z,y € A.

We recall the following definition from [5].

Definition 3.19. If A is a weak E-subpolygroup of a weak F-polygroup P,
then the relation a = b (modA) if and only if there exists a set {cg,c1, ..., Ck4+1}
C P, where ¢y = a, cp+1 = b such that

a- ;' NA#D, c1-c; T NA#D, ... e -bT NAAD.
This relation is defined by aA}pb.

Theorem 3.20. The relation A} is an equivalence relation on weak E-
polygroups.

Proof. 1. Since for any = € A, there exists e € F such that e € z-z71NA,
then aA%pa, ie., A} is reflexive.

2. Suppose that aA%b, then there exists {co,c1,...,ckt1} C P, where ¢ =
a, cx+1 = b such that

a-ci'TNA#D c1-c; 7 NA#D, ... e -b"T NA#D.

Therefore, there exists x; € ¢; - c;_ll NA (i =1,...,k) which implies
;' € eyt and o7t € A, this means that bA%a.

3. Let aA%bband bA%c, where a, b, ¢ € P. Then, there exist {co,c1,...,ckt1}
C P and {do,ds,...,dg+1} C P, where ¢y = a,cp41 = b =do,dry1 = ¢
such that

a-c;7NAAD ¢ NAAD, . e bT NA£D,

bodi?’NA#0, dy-dy7 NA#D,....d.-c"TNA#D.
We take {co,c1,...,Cpt1,d1,da,...,drr1} € P which satisfies the condi-
tion for aApec.
O

We denote A% [x] the equivalence class with representative x.

Theorem 3.21. Let P be a weak E-polygroup. If A is a weak E-subpolygroup
of P, then on the set [P : A] = {A}]a]|la € P} we define the hyperoperation ®
as follows:

Apla] © Ap[b] = {Ap[c]lc € Ap[a] - AB[b]},
what gives the weak E-polygroup < [P : A],®, Ap[E],”7 >, where Apla]~/ =
Asla™].

Proof. We show that AL[a] € Abla] © Able] for any e € I. Sincez € z-e C
Aplx] - Aple] C Aplx] - AR[E], for some e € E. Then Ajle] € ALlx] © Aple].
So, AL[z] € Aplz] © AL[E].

The proof of the conditions (i) and (iii) of Definition 3.1 of ® is similar to
Theorem 2.5. in [5]. O
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If A is a weak E-polygroup of P, then the weak E-polygroup [P : A] is called
the quotient weak E-subpolygroup of P by A.

Corollary 3.22. Let p be strong homomorphism from a weak F1-polygroup
P, into a weak Fs-polygroup P,. Then the following propositions hold:
(i) For alla € Py, p(a=”) = p(a)~7;
(ii) The ker of p is a weak E-subpolygroup of Py;
(iii) Let A be a weak E-subpolygroup of P;. The image p(A) = {p(x)|z € A}
is a weak E-subpolygroup of Py, the inverse image p~'(B) = {z|z €
Py, p(x) € B} is a weak E-subpolygroup of P;.

Theorem 3.23. (Fundamental Homomorphism Theorem). Let Py and Py
be two weak FE,-polygroup and E,-weak polygroup and p be a strong homo-
morphism from Py onto P, with kernel K. Then [P : K| = P;.

Proof. We prove that ¢ : [P, : K] — P by ¢(Kp [7]) = p() for any x €
Py is well defined. If K, [z] = K, [y], then there exists {20, 21, ..., 2k+1} C P,
where zy = x, zx+1 = y such that

z- 27 K A0, 212" NK#0,..., 2 -y 7 NK #0.
Thus, there exist eq,...,ex+1 € E7 such that

er€p(a-z7),en € p(z-27), .y enpr € plan-y~)) or e1 € p(a) % plz1) 7,

ea € p(z1) * p(z2) 7, .., enyr € plzw) * ply) =7

and so p(z) = p(y).

It is obvious that ¢ is homomorphism. Also, ¢(K) = ¢(Kp [E1]) = p(E1) =
Es.

Furthermore, if ¢(Kp [7]) = ¢(Kp, [y]), then p(x) = p(y) which implies that
z €y 'NK # 0 and so K} [z] = Kp, [y]. Thus, ¢ is a one to one mapping. [

4. Some results for E-polygroups

Let P; and P, be a weak Ej-polygroup and a weak Fs-polygroup, respec-
tively. We recall that a strong homomorphism ¢ : P, — P is an isomorphism
if ¢ is one to one and onto. We write Py = P if P; is isomorphic to Ps.

Let P, be an E-polygroup, E C a-a~” for all a € Py, then we have
H(E) C ¢(a)*(pa=") or Es C ¢(a)*d(a~”) which implies p(a=7) € ¢(a)™7 *ea,
for some ey € Ey, therefore ¢(a1) = ¢(a)~ for all @ € P;. Moreover, if
¢ is a strong homomorhism from P; into P», then the kernel of ¢ is the set
ker ¢ = {x € Pi|¢p(z) € Eo}. It is trivial that ker ¢ is a E-subpolygroup of P
but in general is not normal in P;.

Lemma 4.1. Let ¢ be a strong homomorphism from P; into P,. Then
d(y) = ¢(z) implies y = zF; if and only if ker ¢ = Fj.
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Proof. Let y,z € Py be such that ¢(y) = ¢(z). Then ¢(y) * ¢(y~7) =
#(2) * p(y~7). Tt follows that ¢(e1) € d(yy~7) = ¢(zy~7), for some e; € E
and so there exists x € yz~7 such that es = ¢(e1) = ¢(x). Thus, if ker¢ = E,
then z € E1, whence y = zE. Now, let © € ker$. Then ¢(x) = e € ¢(E). So,
x € F. O

We call the homomorphism ¢ : P, — P5 is a weak isomorphism if ker ¢ =
E; and ¢ is onto. If ¢ is a weak isomorphism we say P; is weak isomorphic
with P, and denoted by P, Zy Ps.

Theorem 4.2. (First Isomorphism Theorem). Let ¢ be a strong homomor-
phism from P; into P, with kernel K such that K is a normal E-subpolygroup
of Py, then P, /K y Img.

Proof. We define ¢ : Pi/K =y Img by setting ¢(Kz) = ¢(z) for all
x € Pp. It is easy to see that v is a weak isomorphism. O

Theorem 4.3. (Second Isomorphism Theorem). If K and N are E-subpoly
groups of an E-polygroup P, with N E-normal in P, then K/N N K Xy
NK/N.

Proof. Since N is an E-subnormal of P, we have NK = K N. Consequently,
NK is an E-subpolygroup of P. Further N = NE C NK given that N is an
E-subnormal of NK; so NK/N is defined. Define ¢ : K — NK/N by ¢(k) =
Nk, which is a strong homomorphism. Consider any Na € NK/N,a € NK.
Now a € NK given a € nk for some n € N, k € K. Thus, by Lemma 2.10,
Na = Nnk = Nk = ¢(k). This shows that ¢ is also onto. If we can establish
that ker¢ = N N K, since N N K is an E-subnormal of K, we shall get that
K/NNK = NK/N. For any k € K,

keckerg = pk)=N< Nk=Noske Neke NNK.

That is, k € ker ¢ & k € NN K. This yields ker ¢ = N N K. Hence the results
follows. O

Theorem 4.4. (Third Isomorphism Theorem). If K and N are two E-
subnormals of an E-polygroup P such that N C K, then K/N is an E-
subnormal of P/N and (P/N)/(K/N) 2w P/K.

Proof. We leave it to reader to verify that K/N is an E-subnormal of P/N.
Furthermore, ¢ : P/N = P/K defined by ¢(Nz) = Kz is a strong homomor-
phism of P/N onto P/K such that ker ¢ = K/N. O

Corollary 4.5. If Ny, Ny are two E-subnormals of Py, P, respectively,
then N1 x Ny is an E-subnormal of Py x Py and (P; x P)/(Ny x Ng) Sy
Pl/Nl X PQ/NQ.
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Let < P,o, E,”7 > be a weak E-polygroup. We can define the relation 3*
as the smallest equivalence relation on P such that quotient P/S* is a group.
One can prove that the fundamental relation 8* is the transitive closure of
the relation f.
The kernel of canonical map ¢ : P — P/3* is denoted by wp. It is easy to
prove that the following statements
(i) wp = B*(E);
(i) g*(z)~7 = p*(z~7), for all x € P.
Let My =< Py,-, E1,”t > and My =< Py, %, E»,”2 > be two weak E-polygroups,
then on P; x P, we can define a hyperproduct similar to the hyperproduct of
weak E-polygroups as follows: (z1,y1) 0 (22,y2) = (a,b)|a € x1 - 22,b € yy * ya.
We call this the direct product of P, and P,. It is easy to see that P x P
equipped with the usual direct product operation becomes a weak I-polygroup.

Theorem 4.6. Let 85, 55 and 3* be the fundamental equivalence relations
on Py, Py and Py x P, respectively. Then (P1 x P2)/B* Zw Py/Bf x Py/f5.

Proof. The proof is similar to the proof of Theorem 2.4. in [5]. O

Similar to polygroups and weak polygroups and using the fundamental
equivalence relation, we can define semidirect hyperproduct of weak E-polygroups.
Let A =< A,-,E1,”t > and B =< B, *, F5,”2 > be two weak E-polygroups.
Consider the group Aut(A) and the fundamental group B/S}, let

= B/BE — Aut(A),
B(b) > B*(b) = b
be a homomorphism of groups. Then on A x B we define a hyperproduct of as
follows:

(a1,b1) © (az,b2) = (z,y)|x € ay - lﬂ(ag),y € by * bs.

Theorem 4.7. A x B equipped with the semidirect hyperproduct is a weak
E-polygroup.

Proof. The proof is similar to the proof of Theorem 2.6. in [5]. O
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