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THE ZETA-DETERMINANTS OF LAPLACIANS ON THE

MÖBIUS BAND AND KLEIN BOTTLE

Yoonweon Lee

Abstract. We compute the zeta-determinants of the scalar Laplacians
defined on the Möbius band and Klein bottle when the flat metrics are

given. We consider the difference between these zeta-determinants and

those of the product manifolds, and use the BFK-gluing formula to com-
pute the difference. The zeta-determinants of product manifolds are well

known and this computes the zeta-determinants on the Möbius band and

Klein bottle. We finally show that the zeta-determinant on the Klein
bottle satisfies the BFK-gluing formula.

1. Introduction

In this paper we are going to compute the zeta-determinants of Laplace op-
erators defined on the Möbius band and Klein bottle. The zeta-determinants of
Laplace operators are global spectral invariants, which play important roles in
geometry, topology and theoretical physics including the theory of the analytic
torsion ([6], [7], [11], [20], [22]). The Möbius band and Klein bottle are typical
examples of mapping tori. With these reasons, we begin with the definitions
of the zeta-determinant and the mapping torus.

Let (M, gM ) be an (m−1)-dimensional compact oriented Riemannian man-
ifold with boundary ∂M , where ∂M may be empty. If ∂M is not empty, we
impose an elliptic boundary condition on ∂M , for example, the Dirichlet or
Neumann boundary condition. We denote by ∆M a Laplace operator acting
on smooth functions on M satisfying the boundary condition. The convention

of defining a Laplacian is that the principal part is −gij ∂2

∂xi∂xj
so that ∆M is

a non-negative operator. Then, it is well known that ∆M has a discrete spec-
trum, which we denote by 0 = µ0 < µ1 ≤ µ2 ≤ µ3 ≤ · · · −→ ∞. For s ∈ C, we
define the zeta function ζ∆M

(s) associated to ∆M by
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ζ∆M
(s) =

∞∑
k=1

µ−s
k =

1

Γ(s)

∫ ∞

0

ts−1
(
Tr e−t∆M − dimker∆M

)
dt.

Then, ζ∆M
(s) is holomorphic for ℜs > m−1

2 and has an meromorphic contin-
uation to C having a regular value at s = 0 ([7], [10], [22]). We define the
zeta-determinant Det∆M of ∆M by

Det∆M = e−ζ′
∆M

(0), or equivalently logDet∆M = −ζ ′∆M
(0).

Let φ :M →M be a homeomorphim. For an interval [0, a] with 0 < a ∈ R,
the mapping torus Mφ is defined by the quotient space

Mφ = M × [0, a]/(x, 0) ∼ (φ(x), a).

Equivalently, we define a Z-action on M × R by

Z× (M × R) →M × R, m · (x, u) = (φm(x), u+ma).

This action is properly discontinuous and Mφ is the quotient space. In fact,
Mφ is a fiber bundle over S1 with a fiber M and every fiber bundle over S1

can be expressed by a mapping torus. It is well known that Mφ is a trivial
bundle if and only if φ is isotopic to the identity map of M . If M = [−b, b] for
0 < b ∈ R and φ : [−b, b] → [−b, b], φ(x) = −x, then Mφ is a Möbius band.

If M = S1( b
π ) and φ : S1( b

π ) → S1( b
π ), φ(

b
π e

iθ) = b
π e

−iθ, then Mφ is a Klein

bottle, where S1(r) is the round circle of radius r > 0.
To define a Riemann metric on Mφ, we consider a more specific case. On

a Riemannian manifold (M, gM ), we suppose that φ :M →M is an isometry.
We also consider the Riemannian product M ×R, where we give the usual flat
metric on R. The mapping torus Mφ induced from M ×R is called the metric
mapping torus ([1]). Then, there is a natural Riemann metric on a metric
mapping torus Mφ induced from the Riemannian product M × R. In this
paper, a mapping torus means a metric mapping torus. The metric mapping
tori play important roles in the study of co-symplectic and co-Kähler manifolds,
which are odd dimensional analogues of symplectic and Kähler manifolds ([2],
[3], [18]).

WhenM is a closed Riemannian manifold, the zeta-determinants of Laplace
operators defined on Mφ were computed in [17] by using the BFK-gluing for-
mula for zeta-determinants ([4]). For example, the zeta-determinant of the
Laplace operator on the metric Klein bottle K was computed in [17]. However,
this formula is not applicable if ∂M ̸= ∅. With this reason we need to use a
different method when we compute the zeta-determinant on the metric Möbius
band M.
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In this paper, we are going to compute the zeta-determinants of the scalar
Laplace operator ∆M,D defined on the metric Möbius bandM with the Dirichlet
boundary condition on ∂M and ∆K defined on the metric Klein bottle K by
using the BFK-gluing formula and the results of [15]. Later, one of the referees
made an excellent observation that ζ∆M,D

(s) and ζ∆K(s) can be expressed by
sums of the Epstein zeta functions, which gives a simpler way of obtaining the
same results in slightly different forms by computing the Epstein zeta functions
directly. However, the method presented here has its own advantage, which is
that this method can be applied to a wider class of manifolds. We finally show
that the zeta-determinant of ∆K satisfies the BFK-gluing formula. So far,
we don’t find a corresponding formula for ∆M since in case of M the cutting
hypersurface intersects the boundary ∂M.

2. Computation of the zeta-determinant on the metric Möbius
band

For 0 < a, b ∈ R, we define a Z-action on R× [−b, b] by

Z× (R× [−b, b]) → R× [−b, b], k · (x, y) = (x+ ka, (−1)ky),(1)

where we give the trivial flat product metric on R × [−b, b]. Then, the orbit
space is called the metric Möbius band M. If p : R× [−b, b] → M is a universal
covering space, there is a natural metric on M whose lifting is the flat metric
on R× [−b, b]. We define Ω0

M(R× [−b, b]) by

Ω0
M(R× [−b, b]) = {f ∈ C∞(R× [−b, b]) | f(x, y) = f(x+ a, −y)}.

Then, the Laplacian ∆M is described by

∆M = −
(
∂2

∂x2
+

∂2

∂y2

)
, Dom(∆M) = Ω0

M(R× [−b, b]).

Here we give the Dirichlet boundary condition on the boundary ofM and denote
by ∆M,D the Laplacian ∆M imposed by the Dirichlet boundary condition, where
D stands for the Dirichlet boundary condition. The eigenfunctions of ∆M,D are
given by

sin

(
2πm

a
x

)
cos

(
π

b

(
n− 1

2

)
y

)
, cos

(
2πm

a
x

)
cos

(
π
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(
n− 1
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)
y

)
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sin

(
2π

a

(
m− 1

2

)
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)
sin
(πn
b
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)
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(
2π

a

(
m− 1

2

)
x

)
sin
(πn
b
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)
,

m ≥ 1, n ≥ 1,

and their corresponding eigenvalues are
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{
4π2m2

a2
+
π2
(
n− 1

2

)2
b2

| m,n = 1, 2, 3, · · ·

}

∪

{
4π2
(
m− 1

2

)2
a2

+
π2n2

b2
| m,n = 1, 2, 3, · · ·

}

∪

{
π2
(
n− 1

2

)2
b2

| n = 1, 2, 3, · · ·

}
,

where the multiplicity of
π2
(
m− 1

2

)2
b2 is 1 and those of other eigenvalues are 2.

The zeta function ζ∆M,D
(s) associated to ∆M,D is given by

ζ∆M,D
(s) = 2

∞∑
m,n=1

(
4π2m2

a2
+
π2
(
n− 1

2

)2
b2

)−s

(2)

+ 2

∞∑
m,n=1

(
4π2
(
m− 1

2

)2
a2

+
π2n2

b2

)−s

+

∞∑
n=1

(
π2
(
n− 1

2

)2
b2

)−s

.

On the other hand, the following Z-action

Z× (R× [−b, b]) → R× [−b, b]), k · (x, y) = (x+ ka, y)

gives the cylinder S := S1( a
2π ) × [−b, b], whose Laplacian is denoted by ∆S.

The eigenfunctions of ∆S,D are given by

sin

(
2πm

a
x

)
cos

(
π

b

(
n− 1

2

)
y

)
, cos

(
2πm

a
x

)
cos

(
π

b

(
n− 1

2

)
y

)
,

sin

(
2πm

a
x

)
sin
(πn
b
y
)
, cos

(
2πm

a
x

)
sin
(πn
b
y
)
, m ≥ 1, n ≥ 1,

and their corresponding eigenvalues are{
4π2m2

a2
+
π2
(
n− 1

2

)2
b2

| n,m = 1, 2, 3, · · ·

}

∪
{
4π2m2

a2
+
π2n2

b2
| m,n = 1, 2, 3, · · ·

}
∪

{
π2
(
n− 1

2

)2
b2

| n = 1, 2, 3, · · ·

}
∪
{
π2n2

b2
| n = 1, 2, 3, · · ·

}
,

where the multiplicities of
π2
(
m− 1

2

)2
b2 and π2m2

b2 are 1 and those of other eigen-
values are 2. The zeta function ζ∆S,D(s) associated to ∆S,D is given by
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ζ∆S,D(s) = 2

∞∑
m,n=1

(
4π2m2

a2
+
π2
(
n− 1

2

)2
b2

)−s

(3)

+2

∞∑
m,n=1

(
4π2m2

a2
+
π2n2

b2

)−s

+

∞∑
n=1

(
π2
(
n− 1

2

)2
b2

)−s

+

∞∑
n=1

(
π2n2

b2

)−s

.

Here ζ∆M,D
(s) and ζ∆S,D(s) are holomorphic for ℜs > 1 and have meromorphic

continuation to the whole complex plane C having a regular value at s = 0 ([7],
[10], [22]). From (2) and (3), we have the following result.

ζ∆M,D
(s)− ζ∆S,D(s)

= 2

∞∑
m,n=1

(
4π2
(
m− 1

2

)2
a2

+
π2n2

b2

)−s

− 2

∞∑
m,n=1

(
4π2m2

a2
+
π2n2

b2

)−s

−
∞∑

n=1

(
π2n2

b2

)−s

= 2

∞∑
m,n=1

(
4π2
(
m− 1

2

)2
a2

+
π2n2

b2

)−s

− 2

∞∑
m,n=1

(
4π2m2

a2
+
π2n2

b2

)−s

−
(
b

π

)2s

ζR(2s),

where ζR(s) is the Riemann zeta function. Using the well known facts ([19])

ζR(0) = −1

2
, ζ ′R(0) = −1

2
log 2π,

we obtain the following result.

Lemma 2.1.

logDet∆M,D − logDet∆S,D = − d

ds

∣∣
s=0

{
2

∞∑
m,n=1

(
4π2
(
m− 1

2

)2
a2

+
π2n2

b2

)−s

− 2

∞∑
m,n=1

(
4π2m2

a2
+
π2n2

b2

)−s}
− log 2b.

Before going further, we briefly discuss the relation of (2) and (3) with the
Epstein zeta function. The Epstein zeta function is defined as follows (p.108
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in [16], [7]). For c ∈ R+ ∪ {0} and r⃗ = (r1, · · · , rd) ∈ (R+)d, the Epstein zeta
function ζE(s; c, r⃗) is defined by

ζE(s; c, r⃗) :=
∑

(m1,··· ,md)∈Zd

(c+ r1m
2
1 + · · ·+ rdm

2
d)

−s(4)

=
1

Γ(s)

∫ ∞

0

ts−1
∑

(m1,··· ,md)∈Zd

e−t(c+r1m
2
1+···+rdm

2
d) dt.

If c = 0, it is understood that the sum in (4) is taken over (0, · · · , 0) ̸=
(m1, · · · ,md) ∈ Zd. It is well known that ζE(s; c, r⃗) is holomorphic for ℜs > d

2
and has a meromorphic continuation to the whole complex plane C having a
regular value at s = 0. The zeta function associated to the Laplacian on flat
torus is expressed by the Epstein zeta function with c = 0 (see (13) below).
Now let d = 2 and c = 0. We refer to [16] for details of the Epstein zeta
function. Then,

ζE(s; 0, r⃗) := 4
∑

m,n≥1

(r1m
2 + r2n

2)−s + 2
(
r−s
1 + r−s

2

)
ζR(2s).(5)

It follows form (2) and (5) that

ζ∆M,D
(s)(6)

= 2

∞∑
m,n=1

(
4π2m2

a2
+
π2n2

4b2

)−s

− 2

∞∑
m,n=1

(
4π2m2

a2
+
π2n2

b2

)−s

+ 2

∞∑
m,n=1

(
π2m2

a2
+
π2n2

b2

)−s

− 2

∞∑
m,n=1

(
4π2m2

a2
+
π2n2

b2

)−s

+

∞∑
n=1

(
π2n2

4b2

)−s

−
∞∑

n=1

(
π2n2

b2

)−s

=
1

2
ζE(s; 0, r⃗1) +

1

2
ζE(s; 0, r⃗2) − ζE(s; 0, r⃗3)

+

((
4π2

a2

)−s

−
(
π2

a2

)−s)
ζR(2s),

where r⃗1 =
(

4π2

a2 ,
π2

4b2

)
, r⃗2 =

(
π2

a2 ,
π2

b2

)
and r⃗3 =

(
4π2

a2 ,
π2

b2

)
. Similarly, it follows

by (3) and (5) that

ζ∆S,D(s) =
1

2
ζE(s; 0, r⃗1)−

(
4π2

a2

)−s

ζR(2s),

which leads to
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ζ∆M,D
(s)− ζ∆S,D(s) =

1

2
ζE(s; 0, r⃗2) − ζE(s; 0, r⃗3)

+

(
2

(
4π2

a2

)−s

−
(
π2

a2

)−s)
ζR(2s).

We next compute the zeta-determinant of the right hand side of Lemma
2.1. We consider X := S1( b

π ) × [0, a2 ] with the usual Laplacian ∆X , which is
given by

∆X = − ∂2

∂u2
− π2

b2
∂2

∂θ2
,

where u and θ are variables for [0, a2 ] and S1( b
π ), respectively. We denote by

∆X,D,D (∆X,D,N) the Laplacian ∆X with the Dirichlet boundary condition
on u = 0 and u = a

2 (the Dirichlet boundary condition on u = 0 and the
Neumann boundary condition on u = a

2 ). A simple computation shows that
the eigenfunctions of ∆X,D,D are given by

{
sin

(
2πm

a
u

)
cosnθ, sin

(
2πm

a
u

)
sinnθ | m,n = 1, 2, 3, · · ·

}
∪
{
sin

(
2πm

a
u

)
| m = 1, 2, 3, · · ·

}
,

and the eigenfunctions of ∆X,D,N are given by

{
sin

(
2π
(
m− 1

2

)
a

u

)
cosnθ, sin

(
2π
(
m− 1

2

)
a

u

)
sinnθ | m,n = 1, 2, 3, · · ·

}

∪

{
sin

(
2π
(
m− 1

2

)
a

u

)
| m = 1, 2, 3, · · ·

}
.

Hence, the spectra of ∆X,D,D and ∆X,D,N are given as follows.

Lemma 2.2. ∆X,D,D and ∆X,D,N are invertible operators and their spectra
are given as follows.

Spec (∆X,D,D) =

{
4π2m2

a2
+
π2n2

b2
| m,n = 1, 2, 3, · · ·

}
∪
{
4π2m2

a2
| m = 1, 2, 3, · · ·

}
,
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Spec (∆X,D,N) =

{
4π2
(
m− 1

2

)2
a2

+
π2n2

b2
| m,n = 1, 2, 3, · · ·

}

∪

{
4π2
(
m− 1

2

)2
a2

| m = 1, 2, 3, · · ·

}
,

where the multiplicities of 4π2m2

a2 and
4π2
(
m− 1

2

)2
a2 are 1 and those of other

eigenvalues are 2.

Lemma 2.2 leads to the following result.

ζ∆X,D,N
(s)− ζ∆X,D,D

(s)

= 2

∞∑
m,n=1

(
4π2
(
m− 1

2

)2
a2

+
π2n2

b2

)−s

− 2

∞∑
m,n=1

(
4π2m2

a2
+
π2n2

b2

)−s

+

∞∑
m=1

(
4π2
(
m− 1

2

)2
a2

)−s

−
∞∑

m=1

(
4π2m2

a2

)−s

= 2

∞∑
m,n=1

(
4π2
(
m− 1

2

)2
a2

+
π2n2

b2

)−s

− 2

∞∑
m,n=1

(
4π2m2

a2
+
π2n2

b2

)−s

+

(
2π

a

)−2s

ζH

(
2s,

1

2

)
−
(
2π

a

)−2s

ζR(2s),

where ζH(s, x) is the Hurwitz zeta function defined by ζH(s, x) =
∑∞

n=0(n +
x)−s for x > 0. It is well known (for example, p.23 in [19]) that

ζH

(
0,

1

2

)
= 0, ζ ′H

(
0,

1

2

)
= log Γ

(
1

2

)
− 1

2
log 2π = −1

2
log 2,

which leads to the following result.

logDet∆X,D,N − logDet∆X,D,D(7)

= − d

ds

∣∣
s=0

{
2

∞∑
m,n=1

(
4π2
(
m− 1

2

)2
a2

+
π2n2

b2

)−s

− 2

∞∑
m,n=1

(
4π2m2

a2
+
π2n2

b2

)−s}
+ 2 log

2π

a
ζH

(
0,

1

2

)
− 2ζ ′H

(
0,

1

2

)
− 2 log

2π

a
ζR(0) + 2ζ ′R(0)
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= − d

ds

∣∣
s=0

{
2

∞∑
m,n=1

(
4π2
(
m− 1

2

)2
a2

+
π2n2

b2

)−s

− 2

∞∑
m,n=1

(
4π2m2

a2
+
π2n2

b2

)−s}
+ log

2

a
.

This together with Lemma 2.1 leads to the following result.

Lemma 2.3.

logDet∆M,D − logDet∆S,D = logDet∆X,D,N − logDet∆X,D,D − log
4b

a
.

The zeta-determinant logDet∆S,D is well known. For example, it is com-
puted in Proposition 5.1 of [21] that

logDet∆S,D = log
4b

a
− 2bπ

3a
+ 2

∞∑
m=1

log
(
1− e−

8πbm
a

)
.(8)

To compute logDet∆M,D, we need to compute logDet∆X,D,N−logDet∆X,D,D,
which is discussed in [15]. For self-contained presentation, we give all de-
tails. For 0 ≤ λ ∈ R, we define the Dirichlet-to-Neumann operator Q(λ) :
C∞ (S1( b

π )
)

→ C∞ (S1( b
π )
)
as follows. For f ∈ C∞ (S1( b

π )
)
, we choose

F(x, u) ∈ C∞ (S1( b
π )× [0, a2 ]

)
satisfying

(∆X + λ)F(x, u) = 0, F(x, 0) = 0, F
(
x,
a

2

)
= f.

We define

Q(λ) : C∞
(
S1
( b
π

))
→ C∞

(
S1
( b
π

))
, Q(λ)(f) =

(
d

du
F(x, u)

) ∣∣
u= a

2

.

Then, Q(λ) is a non-negative elliptic pseudodifferential operator of order 1

by the Green formula. Here F(x, u) is constructed as follows. Let f̃ ∈
C∞ (S1( b

π )× [0, a2 ]
)
be an arbitrary extension of f satisfying f̃(x, 0) = 0 and

f̃(x, a2 ) = f . Then, F(x, u) is given by

F(x, u) = f̃ − (∆X,D,D + λ)
−1

(∆X + λ) f̃ .

For the construction of F(x, u), we refer to p.315 of [5] or (3.1) of [21]. We
define the Poisson operator P(λ) and the trace operator γ a

2
as follows.
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P(λ) : C∞
(
S1(

b

π
)

)
→ C∞

(
S1(

b

π
)× [0,

a

2
]

)
, P(λ)(f) = F(x, u),

γ a
2
: C∞

(
S1(

b

π
)× [0,

a

2
]

)
→ C∞

(
S1(

b

π
)

)
,

γ a
2
(ϕ) = ϕ|S1( b

π )×{ a
2 }

= ϕ
(
· , a

2

)
.

Then, P(λ) satisfies

(∆X + λ)P(λ) = 0, γ a
2
· P(λ) = Id,

where ”·” is the operator composition. Taking derivative with respect to λ, we
obtain

P(λ) + (∆X + λ)
d

dλ
P(λ) = 0, γ a

2
· d
dλ

P(λ) = 0,

which shows that

d

dλ
P(λ) = − (∆X,D,D + λ)

−1 · P(λ).

We can rewrite Q(λ) by

Q(λ) = γ a
2
· d
du

P(λ).

Taking derivative with respect to λ, we obtain

d

dλ
Q(λ) = γ a

2
· d
du

d

dλ
P(λ) = −γ a

2
· d
du

(∆X,D,D + λ)
−1 · P(λ)

= γ a
2
· d
du

(
(∆X,D,N + λ)

−1 − (∆X,D,D + λ)
−1

)
· P(λ)

= γ a
2
· d
du

· P(λ) · γ a
2
· (∆X,D,N + λ)

−1 · P(λ)

= Q(λ) · γ a
2
· (∆X,D,N + λ)

−1 · P(λ),

which shows that

Q(λ)−1 · d
dλ
Q(λ) = γ a

2
· (∆X,D,N + λ)

−1 · P(λ).

We note that
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d

dλ

{
logDet (∆X,D,N + λ) − logDet (∆X,D,D + λ)

}
= Tr

{
(∆X,D,N + λ)

−1 − (∆X,D,D + λ)
−1

}
= Tr

{
P(λ) · γ a

2
· (∆X,D,N + λ)

−1

}
= Tr

{
γ a

2
· (∆X,D,N + λ)

−1 · P(λ)

}
= TrQ(λ)−1 · d

dλ
Q(λ)

=
d

dλ
logDetQ(λ),

which leads to the following result.

Lemma 2.4. There exists a constant c ∈ R such that

logDet (∆X,D,N + λ) − logDet (∆X,D,D + λ) = c + logDetQ(λ).

It is well known that each term in Lemma 2.4 has an asymptotic expan-
sion for λ → ∞. It is also known that the constant terms in the asymptotic
expansions of logDet (∆X,D,N + λ) and logDet (∆X,D,D + λ) are zero (Lemma
2.1 in [13], (1.6) in [14], or (5.1) in [23]). Hence, −c is the constant term in the
asymptotic expansion of logDetQ(λ). Putting λ = 0, we obtain the following
result.

Lemma 2.5. There exists a constant c ∈ R such that

logDet∆X,D,N − logDet∆X,D,D = c + logDetQ(0),

where −c is the constant term in the asymptotic expansion of logDetQ(λ) for
λ→ ∞.

A simple computation shows that the spectrum of the Dirichlet-to-Neumann
operator Q(λ) is given by

Spec(Q(λ)) =

{√
π2m2

b2
+ λ

(
1 +

2

e
a
√

π2m2

b2
+λ − 1

)
| m ∈ Z

}
,

which shows that

Q(λ) =
√
∆S( b

π ) + λ

(
Id+

2

e
a
√

∆
S( b

π
)
+λ

− Id

)
.

The following lemma is well known (for example, Lemma 3.2 in [12]).
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Lemma 2.6. For a positive definite, self-adjoint elliptic pseudodifferential
operator A of positive order and a trace class operator Q with I+Q invertible,
the following equality holds.

logDetA(I +Q) = logDetA + log detFr(I +Q).

Lemma 2.6 shows that

logDetQ(λ) =
1

2
logDet

(
∆S( b

π ) + λ
)
+
∑
m∈Z

log

(
1 +

2

e
a
√

π2m2

b2
+λ − 1

)
.

It is known that for λ → ∞ the constant term in the asymptotic expansion

of logDet
(
∆S( b

π ) + λ
)
is zero (Lemma 2.1 in [13], (1.6) in [14], (4.12) in [23])

and

∑
m∈Z

log

(
1 +

2

e
a
√

π2m2

b2
+λ − 1

)
= O(ea

√
λ).

This shows that the constant term in the asymptotic expansion of logDetQ(λ)
is zero and hence c = 0. This leads to the following result, which is obtained
in Theorem 2.4 of [15].

Theorem 2.7.

logDet∆X,D,N − logDet∆X,D,D = logDetQ(0).

A simple computation shows that

Spec(Q(0)) =

{
2

a

}
∪
{
πm

b

(
1 +

2

e
aπm

b − 1

)
| m = 1, 2, · · ·

}
,

where the multiplicity of 2
a is 1 and that of πm

b

(
1 + 2

e
aπm

b −1

)
is 2. By Lemma

2.6, it follows that

logDetQ(0) = log
2

a
+

1

2
logDet∆S( b

π ) + 2

∞∑
m=1

log

(
1 +

2

e
aπm

b − 1

)
(9)

= log
2

a
+ log 2b + 2

∞∑
m=1

log

(
1 +

2

e
aπm

b − 1

)
.

Lemma 2.3 and Theorem 2.7 with (8) and (9) lead to the following result.

Theorem 2.8. Let M be the metric Möbius band defined in (1) and ∆M be
the Laplacian acting on smooth functions on M. Then, the zeta-determinant
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of ∆M,D is given by

logDet∆M,D = log
4b

a
− 2πb

3a
+ 2

∞∑
m=1

log
(
1− e−

8πbm
a

)
+ 2

∞∑
m=1

log

(
1 +

2

e
aπm

b − 1

)
.

Remark : This result can be obtained in a slightly different form by taking
derivatives on the Epstein zeta functions and Riemann zeta function in (6).

3. Computation of the zeta-determinant on the metric Klein bot-
tle

In this section, we are going to compute the zeta-determinant of the Laplace
operator on the metric Klein bottle K by using a similar method presented in
the previous section. The Klein bottle K is obtained by the group of motions
on R2 generated by (x, y) 7→ (x, y + 2b) and (x, y) 7→ (x + a, 2b − y) for some
0 < a, b ∈ R. The fundamental domain for K is (0, a)× (0, 2b). We denote by
Ω0

K(R2) the set of smooth functions which are invariant under these motions,
i.e.

Ω0
K(R2) = {f ∈ C∞(R2) | f(x, y) = f(x, y + 2b) = f(x+ a, 2b− y)}.

The Laplacian ∆K is described by

∆K = −
(
∂2

∂x2
+

∂2

∂y2

)
defined on Ω0

K(R2). The eigenfunctions are given by

cos

(
2πm

a
x

)
cos
(πn
b
y
)
, sin

(
2πm

a
x

)
cos
(πn
b
y
)
,

cos

(
2π

a

(
m− 1

2

)
x

)
sin
(πn
b
y
)
, sin

(
2π

a

(
m− 1

2

)
x

)
sin
(πn
b
y
)
,

m ≥ 1, n ≥ 1,

and their corresponding eigenvalues are

{
0

}
∪
{
4π2m2

a2
+
π2n2

b2
| m,n = 1, 2, · · ·

}
∪
{
4π2m2

a2
| m = 1, 2, · · ·

}
(10)

∪
{
π2n2

b2
| n = 1, 2, · · ·

}
∪
{
4π2

(
m− 1

2

)2
a2

+
π2n2

b2
| m,n = 1, 2, · · ·

}
,
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where the multiplicity of m2π2

b2 is 1 and the multiplicities of other non-zero
eigenvalues are 2.

The flat torus T is obtained by the group of motions on R2 generated by
(x, y) 7→ (x, y + 2b) and (x, y) 7→ (x + a, y). The fundamental domain is
(0, a)× (0, 2b). The eigenfunctions are given by

cos

(
2πm

a
x

)
cos
(πn
b
y
)
, sin

(
2πm

a
x

)
cos
(πn
b
y
)
,

cos

(
2πm

a
x

)
sin
(πn
b
y
)
, sin

(
2πm

a
x

)
sin
(πn
b
y
)
, m ≥ 1, n ≥ 1,

and their corresponding eigenvalues are

{
0

}
∪
{
4π2m2

a2
+
π2n2

b2
| m,n = 1, 2, · · ·

}
∪
{
4π2m2

a2
| m = 1, 2, · · ·

}
(11)

∪
{
π2n2

b2
| m = 1, 2, · · ·

}
,

where the multiplicity of 4π2m2

a2 + n2π2

b2 is 4 and the multiplicities of other non-
zero eigenvalues are 2. From (10), (11) and (5), the zeta functions ζ∆K(s) and
ζ∆T(s) associated to ∆K and ∆T are given as follows.

ζ∆K(s) = 2

∞∑
m,n=1

(
4π2m2

a2
+
π2n2

b2

)−s

(12)

+ 2

∞∑
m,n=1

(
4π2

(
m− 1

2

)2
a2

+
π2n2

b2

)−s

+ 2

∞∑
m=1

(
4π2m2

a2

)−s

+

∞∑
n=1

(
π2n2

b2

)−s

=
1

2
ζE(s; 0, r⃗2) +

(
2

(
4π2

a2

)−s

−
(
π2

a2

)−s
)
ζR(2s),

ζ∆T(s) = 4

∞∑
m,n=1

(
4π2m2

a2
+
π2n2

b2

)−s

+ 2

∞∑
m=1

(
4π2m2

a2

)−s

(13)

+ 2

∞∑
n=1

(
π2n2

b2

)−s

= ζE(s; 0, r⃗3).

From (12) and (13), it follows that
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ζ∆K(s)− ζ∆T(s)

= 2

∞∑
n,m=1

(
4π2

(
m− 1

2

)2
a2

+
π2n2

b2

)−s

− 2

∞∑
n,m=1

(
4π2m2

a2
+
π2n2

b2

)−s

−
∞∑

n=1

(
π2n2

b2

)−s

= 2

∞∑
n,m=1

(
4π2

(
m− 1

2

)2
a2

+
π2n2

b2

)−s

− 2

∞∑
n,m=1

(
4π2m2

a2
+
π2n2

b2

)−s

−
(
b

π

)2s

ζR(2s),

which together with (7) and (9) shows that

logDet∆K − logDet∆T

= logDet∆X,D,N − logDet∆X,D,D − log
2

a
− log 2b

= log
2

a
+ log 2b + 2

∞∑
m=1

log

(
1 +

2

e
aπm

b − 1

)
− log

2

a
− log 2b

= 2

∞∑
m=1

log

(
1 +

2

e
aπm

b − 1

)
.

It is known in Theorem 8.3 of [9] that

logDet∆T = 2 log 2b− 2πb

3a
+ 4

∞∑
m=1

log
(
1− e−

4πbm
a

)
,

which leads to the following result.

Theorem 3.1. The zeta-determinant of the scalar Laplacian ∆K defined
on K is given by

logDet∆K = 2 log 2b− 2πb

3a
+ 4

∞∑
m=1

log
(
1− e−

4πbm
a

)
+ 2

∞∑
m=1

log

(
1 +

2

e
aπm

b − 1

)
.

Remark : (1) Theorem 3.1 is obtained in Theorem 2.8 of [17] by using a different
method. In [17] the zeta-determinant on a metric mapping torus is computed
by using the BFK-gluing formula for zeta-determinants proved in [4] (see also
[5] and [8]).
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(2) This result can be obtained in a slightly different form by taking derivatives
on the Epstein zeta function and Riemann zeta function in (12).

We finally discuss the BFK-gluing formula for the zeta-determinant on the
metric Klein bottle K, which is also obtained as follows. For r > 0, let S1(r)
be the round circle of radius r. We define

φ : S1

(
b

π

)
→ S1

(
b

π

)
, φ

(
b

π
eiθ
)

=
b

π
e−iθ.

Then the metric mapping torus associated to φ is K = S1
(
b
π

)
φ
. We now cut

K along S1
(
b
π

)
× {0} to obtain S1

(
b
π

)
× [0, a]. Let Det∆S1( b

π )×[0,a],D be the

zeta-determinant of the scalar Laplacian defined on S1
(
b
π

)
× [0, a] with the

Dirichlet boundary condition. The BFK-gluing formula express logDet∆K −
logDet∆S1( b

π )×[0,a],D by the zeta-determinant of some Dirichlet-to-Neumann

operator defined on S1
(
b
π

)
× {0} with some extra term. We are going to

investigate this formula. It is known (for example, Proposition 5.1 in [21], (8))
that

logDet∆S1( b
π )×[0,a],D = log

a

b
− aπ

6b
+ 2

∞∑
m=1

log
(
1− e−

2aπm
b

)
,

logDet∆S1( b
π )×S1( a

2π )
= 2 log 2b− 2bπ

3a
+ 4

∞∑
m=1

log
(
1− e−

4bπm
a

)
= logDet∆S1( a

2π )×S1( b
π )

= 2 log a− aπ

6b
+ 4

∞∑
m=1

log
(
1− e−

aπm
b

)
.

In fact, the last equality is obtained from the second equality by replacing a
with 2b and b with a

2 , and vice versa. The above equalities with Theorem 3.1
leads to the following result.

logDet∆S1( b
π )×[0,a],D =

{
2 log a− aπ

6b
+ 4

∞∑
m=1

log
(
1− e−

aπm
b

)}
(14)

+

{
2

∞∑
m=1

log
1− e−

2aπm
b(

1− e−
aπm

b

)2 − log ab

}

=

{
2 log 2b− 2bπ

3a
+ 4

∞∑
m=1

log
(
1− e−

4bπm
a

)}

+

{
2

∞∑
m=1

log
1 + e−

aπm
b

1− e−
aπm

b
− log ab

}



The zeta-determinants of Laplacians on the Möbius band and Klein bottle 603

= 2 log 2b− 2bπ

3a
+ 4

∞∑
m=1

log
(
1− e−

4bπm
a

)
+ 2

∞∑
m=1

log
1 + e−

aπm
b

1− e−
aπm

b
− log ab

= logDet∆K − log a− log b.

We next define the Dirichlet-to-Neumann operator R : C∞ (S1
(
b
π

))
→

C∞ (S1
(
b
π

))
as follows. For f ∈ C∞ (S1

(
b
π

))
, we choose ψ(θ, u) ∈ C∞(S1

(
b
π

)
×

[0, a]
)
satisfying(

− ∂2

∂u2
− π2

b2
∂2

∂θ2

)
ψ = 0, ψ(θ, 0) = f(θ), ψ(θ, a) = f(φ−1(θ)).

Then, R(f) is defined by

R(f) =

(
∂

∂u
ψ

)
(φ(θ), a) −

(
∂

∂u
ψ

)
(θ, 0).

Then, it is well known that R is a non-negative elliptic pseudodifferential op-
erator of order 1. If f = constant, then ψ(θ, u) = f and hence

Rf = 0.

For f = cosmθ or sinmθ with m ̸= 0, ψ(θ, u) is given by

ψ(θ, u) =
e−

mπ
b (u−a) − e

mπ
b (u−a)

e
mπ
b a − e−

mπ
b a

f(θ) +
e

mπ
b u − e−

mπ
b u

e
mπ
b a − e−

mπ
b a

f(φ−1(θ)),

which shows that

∂

∂u
ψ(θ, u)

=
mπ

b

(
−e

−mπ
b (u−a) + e

mπ
b (u−a)

e
mπ
b a − e−

mπ
b a

f(θ) +
e

mπ
b u + e−

mπ
b u

e
mπ
b a − e−

mπ
b a

f(φ−1(θ))

)
.

Hence,

R(f) =
2mπ

b

{
e

mπ
b a + e−

mπ
b a

e
mπ
b a − e−

mπ
b a

f(θ)− f(φ(θ)) + f(φ−1(θ))

e
mπ
b a − e−

mπ
b a

}
.

If f = cosmθ, then f(φ(θ)) = f(φ−1(θ)) = f(θ) and

R(f) =
2mπ

b

(
e

mπ
b a + e−

mπ
b a − 2

e
mπ
b a − e−

mπ
b a

)
f(θ)

=
2mπ

b

(
e

mπ
2b a − e−

mπ
2b a

e
mπ
2b a + e−

mπ
2b a

)
f(θ) =

2mπ

b

(
1− e−

mπ
b a

1 + e−
mπ
b a

)
f(θ).

Similarly, if f = sinmθ, then f(φ(θ)) = f(φ−1(θ)) = −f(θ) and
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R(f) =
2mπ

b

(
e

mπ
b a + e−

mπ
b a + 2

e
mπ
b a − e−

mπ
b a

)
f(θ)

=
2mπ

b

(
e

mπ
2b a + e−

mπ
2b a

e
mπ
2b a − e−

mπ
2b a

)
f(θ) =

2mπ

b

(
1 + e−

mπ
b a

1− e−
mπ
b a

)
f(θ).

Hence, the spectrum of R is given by

Spec(R)(15)

=

{
0

}
∪
{
2mπ

b

(
1− e−

mπ
b a

1 + e−
mπ
b a

)
,
2mπ

b

(
1 + e−

mπ
b a

1− e−
mπ
b a

)
| m = 1, 2, 3, · · ·

}
.

Lemma 2.6 shows that

logDetR = log b.(16)

Since the area of S1
(
b
π

)
× [0, a] is 2ab and the length of S1

(
b
π

)
× {0} is 2b,

which shows that

log
Area

(
S1
(
b
π

)
× [0, a]

)
Length

(
S1
(
b
π

)
× {0}

) = log a.

From (14), (15) and (16), we obtain the following result.

Theorem 3.2. The difference of the zeta-determinants of logDet∆K and
logDet∆S1( b

π )×[0,a],D satisfies the following relation.

logDet∆K − logDet∆S1( b
π )×[0,a],D

= logDetR+ log
Area

(
S1
(
b
π

)
× [0, a]

)
Length

(
S1
(
b
π

)
× {0}

) .
Remark : This formula is called the BFK-gluing formula for zeta-determinants.
Theorem 3.2 shows that the BFK-gluing formula also holds on a non-orientable
manifold. However, so far, we don’t find a similar formula for a Möbius band
because in this case the cutting hypersurface intersects the boundary.
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