References
- M. At,ceken and P. Uygun, Characterizations for totally geodesic submanifolds of (κ, µ)-paracontact metric manifolds, Korean J. Math. 28 (2020), no. 3, 555-571.
- M. Atceken, U. Yildirim, and S. Dirik, Pseudoparallel invariant submanifolds of (LCS)n-manifolds, Korean J. Math. 28 (2020), no. 2, 275-284.
- A. Carriazo and V. Martin-Molina, Almost cosymplectic and almost Kenmotsu (κ, µ, ν)-spaces, Mediterr. J. Math.10 (2013) 1551-1571. https://doi.org/10.1007/s00009-013-0246-4
- P. Dacko and Z. Olszak, On almost cosympletic (κ, µ, ν)-spaces, Banach Center Publ., 211-220, 69 Polish Academy of Sciences, Institute of Mathematics, Warsaw, 2005.
- P. Dacko and Z. Olszak, On almost cosymplectic (-1, µ, o)-spaces, Cent. Eur. J. Math. 3 (2005), no. 2, 318-330. https://doi.org/10.2478/BF02479207
- D. Janssens and L. Vanhecke, Almost contact structures and curvature tensors, Kodai Math. J.4 (1981), no.1, 1-27.
- T. W. Kim and H. K. Pak, Canonical foliations of certain classes of almost contact metric structures, Acta Math. Sin. (Engl. Ser.) 21 (2005), no. 4, 841-846. https://doi.org/10.1007/s10114-004-0520-2
- T. Koufogiorgos, M. Markellos, and V. J. Papantoniou, The harmonicity of the Reeb vector fields on contact 3-manifolds, Pasific J. Math. 234 (2008), no.2, 325-344. https://doi.org/10.2140/pjm.2008.234.325
- T. Mert and M. Atceken, Some important properties of almost Kenmotsu (κ, µ, ν) space on the concircular curvature tensor, Fundam. J. Math. Appl. 6 (2023), no.1, 51-60.
- H. Ozturk, C. Murathan, N. Aktan, and A. T. Vanli, Almost α-cosymplectic f-manifolds. Analele S. Tint. Ifice Ale Universitat II. Al.I. Cuza Din Iasi (S.N.) Matematica, Tomul LX, 2014.
- S. Sular, C. Ozgur, and C. Murathan, Pseudoparallel anti-invariant submanifolds of Kenmotsu manifolds, Hacet. J. Math. Stat. 39 (2010), no.4, 535-543.
- I. Vaisman, Conformal changes of almost contact metric structures, Lecture Notes in Math., 792 Springer, Berlin, 1980, ,435-443.
- S. Ozturk and H. Ozturk, Certain class of almost α-cosymplectic manifolds. J. Math. (2021), Art. ID 9277175.