DOI QR코드

DOI QR Code

Study on the improvement for envelopment curve of probable maximum precipitation

가능최대강수량 포락곡선 개선방안 연구

  • Beck, Yoohyun (Department of Urban Infrastructure and Disaster Prevention Engineering, Seokyeong University) ;
  • Ahn, Jaehyun (Department of Civil and Architectural Engineering, Seokyeong University) ;
  • Cho, Hyonkook (Department of Civil Engineering, Kyungpook National University)
  • 백유현 (서경대학교 대학원 도시기반방재안전공학과) ;
  • 안재현 (서경대학교 이공대학 토목건축공학과) ;
  • 조현국 (경북대학교 대학원 토목공학과)
  • Received : 2024.07.22
  • Accepted : 2024.10.04
  • Published : 2024.10.31

Abstract

In Korea, the national PMP map is used to calculate the Probable Maximum Precipitation (PMP) but the intercept adjustments are necessary to obtain uniform PMP envelopment results. The Box-Cox and cubic Spline methods to get the PMP envelopment modeling were proposed by the past studies.. However there has been no significant progress in the study of PMP envelopment modeling since then. This study, which focused on the last step of PMP estimation process in Korea, used the Monotone Cubic Spline (MCS) and compared with existing methods. As a result, the intercept adjustments involving the engineer's subjectivity were necessary to obtain smooth envelopment curves in case of using the existing method such as the cubic spline. However, a smooth envelopment curves were obtained without intercept adjustment in case of using MCS method. Therefore, using the MCS method for dam-related new projects can get smooth and consistent envelopment results without intercept adjustment for PMP calculation in Korea.

국내에서는 PMP 산정시 전국 PMP도를 독치법을 이용하고 있으며, 임의 절편조정을 통해 균일한 포락결과를 얻고 있다. 기존 연구에서는 임의성 배제 및 균일하고 객관적인 포락결과를 얻기 위한 방법으로 Box-Cox와 3차 Spline 방법을 제시했으나 이후 PMP 포락 모형화에 대한 연구에 큰 진전이 없었다. 본 연구에서는 국내 PMP 산정 과정 중 마지막 단계인 포락 모형화 방법으로 단조 3차 스플라인(Monotone Cubic Spline, MCS)을 적용했으며, 기존의 포락 모형화 방법과 비교·검토했다. 그 결과 기존 방법을 이용할 때는 균일한 포락결과를 얻기 위해 엔지니어의 주관성이 반영된 절편조정이 필요했으나, MCS 방법을 이용한 경우에는 별도의 절편조정 없이도 균일하고 객관성있는 결과를 얻을 수 있다. 따라서 향후 댐 관련 사업 시 MCS 방법을 이용한다면 절편조정 없이도 균일하고 객관성 있는 포락 결과를 얻을 수 있다고 판단된다.

Keywords

Acknowledgement

본 연구는 2024년도 서경대학교 교내연구비 지원에 의하여 이루어졌음.

References

  1. Bureau of Meteorology (BM) (2003). The estimation of probable maximum precipitation in Australia: Generalised short-duration method. Bureau of Meteorology, Melbourne, Australia.
  2. Fritsch, F.N., and Carlson, R.E. (1980). "Monotone piecewise cubic interpolation." SIAM Journal on Numerical Analysis, Vol. 17, No. 2, pp. 238-246. https://doi.org/10.1137/0717021
  3. Institute of Hydrology (IH) (1999). Flood estimation handbook. UK.
  4. Kim, Y.K., Kim, Y.S., Yu, W.S., Oh, S.R., and Jung, K.S. (2016). "Development of basin-scale PMP estimation method by considering spatio-temporal characteristics." Journal of Korea Society of Hazard Mitigation, Vol. 16, No. 1, pp. 51-61. https://doi.org/10.9798/KOSHAM.2016.16.1.51
  5. Korea Development Institute (KDI) (2007). Adequacy review of dam design criteria - Focus on estimating PMP and PMF.
  6. Korea Institute of Civil Engineering and Building Technology (KICT) (1987). Review and development of maximum probable precipitation calculation methodology.
  7. K-water (2009). Detailed design of Juam Dam emergency spillway construction.
  8. K-water (2010). Deatiled design of Yeongju Multipurpose Dam construction.
  9. K-water (2011). Deatiled design of Bohyeonsan Multipurpose Dam construction.
  10. Ministry of Construction and Transportation (MCT) (2000). Estimation of probable maximum precipitation in Korea.
  11. Ministry of Construction and Transportation (MCT) (2004). Renewable report of PMP map in Korea.
  12. Ministry of Land, Transport and Maritime Affairs (MLTMA) (2008). PMP and PMF estimation procedure guidelines.
  13. National Academies (NA) (2024). Modernizing probable maximum precipitation estimation. Washington, D.C., U.S.
  14. National Oceanic and Atmospheric Administration (NOAA) (1963). Probable maximum precipitation in the Hawaiian islands, Hydrometeorological Report No. 39, Washington, D.C., U.S.
  15. National Oceanic and Atmospheric Administration (NOAA) (1982). Application of probable maximum precipitation estimates - United States East of the 105th Meridian. Hydrometeorological Report No. 52, Washington, D.C., U.S.
  16. National Oceanic and Atmospheric Administration (NOAA) (1999). Probable maximum precipitation for California. Hydrometeorological Report No. 59, Washington, D.C., U.S.
  17. Park, M.G., Park, M.J., Kim, S.D., and Joo, J.G. (2013). "Extreme storm estimation by climate change using precipitable water." Journal of Korea Society of Hazard Mitigation, Vol. 13, No. 1, pp. 121-127.
  18. Sim, I.K., Lee, O.J., Jeong, S.M., and Kim, S.D. (2019). "Estimating the return period for statistical probable maximum precipitation." Journal of Korea Society of Hazard Mitigation, Vol. 19, No. 1, pp. 273-382. https://doi.org/10.9798/KOSHAM.2019.19.5.273
  19. Sim, K.B., Lee, O.J., Kim, S.D., and Kim, E.S. (2015). "1-day probable maximum precipitation in accordance with AR5 RCPs in Korea." Journal of Korea Society of Hazard Mitigation, Vol. 15, No. 4, pp. 273-280.
  20. World Meteorological Organization (WMO) (1973). Manual for estimation of probable maximum precipitation, First Edition, Operational Hydrology Report No. 1, WMO No. 332, Geneva, Switzerland.
  21. World Meteorological Organization (WMO) (1986). Manual for estimation of probable maximum precipitation, Second Edition, Operational Hydrology Report No. 1, WMO No. 332, Geneva, Switzerland.
  22. World Meteorological Organization (WMO) (2009). Manual on estimation of Probable Maximum Precipitation (PMP), WMO No. 1045, Geneva, Switzerland.