DOI QR코드

DOI QR Code

Evaluation of environmental drought index applicability for watershed-specific drought management

유역 맞춤형 가뭄 관리를 위한 환경가뭄지수 적용성 평가

  • Lim, Jaeyeon (Department of Civil and Environmental Engineering, Myongji University) ;
  • Lee, Sangung (Department of Civil and Environmental Engineering, Myongji University) ;
  • Jo, Bugeon (Institute for Construction and Environment Engineering, Myongji University) ;
  • Kim, Young Do (Department of Civil and Environmental Engineering, Myongji University) ;
  • Lee, Joo-Heon (Department of Civil Engineering, Joongbu University)
  • 임재연 (명지대학교 토목환경공학과) ;
  • 이상웅 (명지대학교 토목환경공학과) ;
  • 조부건 (명지대학교 건설환경연구소) ;
  • 김영도 (명지대학교 토목환경공학과) ;
  • 이주헌 (중부대학교 토목공학과)
  • Received : 2024.08.06
  • Accepted : 2024.10.02
  • Published : 2024.10.31

Abstract

This study comprehensively evaluates the environmental impacts of droughts caused by abnormal climate change. Specifically, to quantitatively analyze the impact of droughts on the water environment of river basins, an Environmental Drought Index (EDI) was developed using meteorological, hydrological, and water quality parameters. The study focuses on the Han River basin, categorizing the watersheds into urban, agricultural, and forest types to develop region-specific EDIs. Various data analysis techniques, such as multiple linear regression, principal component and random forest analysis, were employed to determine the weights of different parameters to assess the impact of droughts. The primary water quality parameter used in the assessment was BOD (Biochemical Oxygen Demand). The results showed that in urban areas, TOC (Total Organic Carbon) and flow were the primary parameters, with significant deterioration in water quality during droughts. In agricultural areas, TOC and EC (Electrical Conductivity) were the primary parameters driving changes in water quality during droughts. In forest areas, TOC, flow and cumulative precipitation were identified as the primary parameters, with relatively less impact compared to other regions.

본 연구는 이상기후변화로 발생하는 가뭄의 환경적 영향을 종합적으로 평가하였다. 특히 가뭄이 하천 유역의 물환경에 미치는 영향을 정량적으로 분석하기 위해 기상, 수문, 수질 항목을 활용하여 환경가뭄지수를 개발하였다. 한강수계를 대상으로 유역 특성에 따라 도시 유형, 농업 유형, 산림 유형으로 구분하여 각 지역별 환경가뭄지수를 산정하였다. 가뭄의 영향을 평가하기 위해 다중선형회귀, 주성분분석, 랜덤포레스트 등의 다양한 데이터 분석 기법을 사용하여 가중치를 산정하였다. 주요 수질 항목으로는 BOD를 활용하여 평가를 진행하였다. 연구 결과, 도시 유형에서는 TOC와 유량이 주요 항목으로 나타나며, 가뭄 시 수질 악화가 두드러지게 나타났다. 농업 유형에서는 TOC와 EC가 주요 항목으로 작용하여 가뭄에 따른 수질 변화가 뚜렷하게 나타났고, 산림 유형에서는 TOC, 유량 및 누적강수량이 주요 항목으로 나타났으며, 다른 지역에 비해 가뭄의 영향이 상대적으로 적게 나타났다.

Keywords

Acknowledgement

본 결과물은 환경부의 재원으로 한국환경산업기술원의 수생태계 건강성 확보 기술개발사업의 지원을 받아 연구되었습니다(2022003050007).

References

  1. Abdel-Aty, M.A., and Pemmanaboina, R. (2006). "Calibrating a realtime traffic crash-prediction model using archived weather and ITS traffic data", IEEE Transactions on Intelligent Transportation Systems, Vol. 7, No. 2, pp. 167-174. https://doi.org/10.1109/TITS.2006.874710
  2. Bilgin, A. (2018). "Evaluation of surface water quality by using Canadian Council of Ministers of the Environment Water Quality Index (CCME WQI) method and discriminant analysis method: A case study Coruh River Basin." Environmental Monitoring and Assessment, Vol. 190, pp. 1-11.
  3. Cha, K.H., Kim, S.W., Kim, J.H., Park, M.Y., and Kong, J.S. (2015). "Development of the deterioration models for the port structures by the multiple regression analysis and markov chain." Journal of the Computational Structural Engineering Institute of Korea, Vol. 28, No. 3, pp. 229-239. https://doi.org/10.7734/COSEIK.2015.28.3.229
  4. Jang, J.H., Lee, H.J, Kim, H.K., Park, J.H., Kim, J.H., and Rhew, D.H. (2010). "Improvement of water quality and streamflow monitoring to quantify point and nonpoint source pollutant loads." Journal of Korean Society on Water Quality Environment, Vol. 26, No. 5, pp. 860-870.
  5. Jang, S.S., Ji, H.S., and Kim, H.K. (2018). "Identifying priority area for nonpoint source pollution management and setting up load reduction goals using the load duration curve." Journal of The Korean Society of Agricultural Engineers, Vol. 60, No. 5, pp. 17-27. https://doi.org/10.5389/KSAE.2018.60.5.17
  6. Jo, B.G., Lee, S.U., Kim, Y.D., and Lee, J.H. (2023). "Drought impact on water quality environment through linkage analysis with meteorological data in Gamcheon mid-basin." Journal of Korea Water Resources Association, Vol. 56, No. 11, pp. 823-835. https://doi.org/10.3741/JKWRA.2023.56.11.823
  7. Kim, H.J. (2012) "Current status and environment-friendly development policy of urban riverfront in Korea on the basis of It's locational property" The Journal of the Korea Contents Association, Vol. 12, No. 3, pp. 449-460. https://doi.org/10.5392/JKCA.2012.12.03.449
  8. Ko, K.S., Kim, Y.J., Koh, D.C., Lee, K.S., Lee, S.G., Kang, C.H., Seong, H.J., and Park, W.B. (2005). "Hydrogeochemical characterization of groundwater in Jeju Island using principal component analysis and geostatistics." Economic and Environmental Geology, Vol. 38, No. 4, pp.435-450.
  9. Lee, S.R., Shin, J.Y., Lee, G.J., Kim, K.S., Lim, K.J., and Kim, J.G. (2018). "Analysis of water pollutant load characteristics and its contributions during dry season: Focusing on major streams inflow into South-Han River of Chungju-dam Downstream." Korean Society of Environmental Engineers, Vol. 40, No. 6, pp. 247-257. https://doi.org/10.4491/KSEE.2018.40.6.247
  10. Lee, S.U., Jo, B.G., and Kim, Y.D. (2022). "Assessment of water quality index suitability of domestic watersheds." Journal of Korea Water Resources Association, Vol. 55, No. 5, pp. 371-381. https://doi.org/10.3741/JKWRA.2022.55.5.371
  11. McKee, T.B., Doesken, N.J., and Kleist, J. (1993). "The relationship of drought frequency and duration to time scales." Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, U.S., Vol. 17, No. 22, pp. 179-183.
  12. Nalbantis, I. (2008). "Evaluation of a hydrological drought index." European Water, Vol. 23, No. 24, pp. 67-77.
  13. Park, H.S., Kwon, O.H., Park, S.E., and Park, S.H.(2022). "Analysis of factors influencing traffic culture index using principal component analysis and random forest." Traffic Safety Research, Vol. 41, No. 1, pp. 3-20. https://doi.org/10.22940/TSR.2022.41.1.3
  14. Seo, J.Y., Lee, J.H., Lee, H.S., and Kim, S.D.(2023). "Probabilistic monitoring of effect of meteorological drought on stream BOD water quality." Journal of Korean Society on Water Environment, Vol. 39, No. 1, pp. 9-19. https://doi.org/10.15681/KSWE.2023.39.1.9
  15. Shin, S.M., Bae, H.K., Shim, K.H., and Kim, S.M. (2022). "Selecting rivers for management via pollution impact evaluation of tributaries of the Geumho River." Journal of the Korean Society of Hazard Mitigation, Vol. 22, No. 1, pp. 241-250. https://doi.org/10.9798/KOSHAM.2022.22.1.241
  16. U.S. EPA Office of Wetlands, Oceans and Watershed (U.S. EPA) (2007). An approach for using load duration curves in the development of TMDLs. Washington, D.C., U.S.
  17. Vicente-Serrano, S.M., Begueria, S., and Lopez-Moreno, J.I. (2010). "A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index." Journal of Climate, Vol. 23, No. 7, pp. 1696-1718. https://doi.org/10.1175/2009JCLI2909.1
  18. Yang, H.K. (2006). "Runoff characteristics of non-point source pollutants in storm event -Case study on the upstream and downstream of Kokseong River, Korea-." Journal of the Korean Geographical Society, Vol. 41, No. 4, pp. 418-434.
  19. Yoo, J.Y., So, B.J., Lee, J.H., and Kim, T.W. (2020). "Analysis of drought propagation from meteorological to hydrological drought considering spatio-temporal moving pattern of drought events." Journal of the Korean Society of Civil Engineers, Vol. 40, No. 2, pp. 135-143. https://doi.org/10.12652/KSCE.2020.40.2.0135