DOI QR코드

DOI QR Code

디지털 필터 기법을 활용한 장기유출모형 모의 정확도 향상

Enhancing the simulation accuracy of long-term runoff models using digital filter methods

  • 임예진 (세종대학교 건설환경공학과) ;
  • 배덕효 (세종대학교 건설환경공학과) ;
  • 권현한 (세종대학교 건설환경공학과) ;
  • 신홍준 (한국수력원자력(주) 수력처 수력기술부)
  • Lim, Ye-Jin (Department of Civil & Environmental Engineering, Sejong University) ;
  • Bae, Deg-Hyo (Department of Civil & Environmental Engineering, Sejong University) ;
  • Kwon, Hyun-Han (Department of Civil & Environmental Engineering, Sejong University) ;
  • Shin, Hong-Joon (Hydro Technology Department, Hydro Power Division, Korea Hydro & Nuclear Power Co. Ltd)
  • 투고 : 2024.04.16
  • 심사 : 2024.09.09
  • 발행 : 2024.10.31

초록

본 연구에서는 디지털 필터 기법과 장기유출모형(SWAT, TANK)을 연계하여 총유출량 및 유출성분을 모두 고려할 수 있는 매개변수 추정 방안을 제시하고, 적용기법의 적절성을 평가하고자 한다. 적용 대상유역은 소양강댐 유역이며, 총유출량을 고려한 매개변수 추정 방안과 유출성분을 고려한 매개변수 추정 방안으로 구분하여 매개변수 검·보정을 수행하였다. 두 방안 모두 관측 및 모의유량 간의 적합도가 우수하게 나타났으며 결정계수(R2) 0.73~0.87, NSE 0.67~0.85로 모형성능이 양호한 것으로 나타났다. 각 방안에 대한 비교 결과, SWAT 모형과 TANK 모형 모두 유출성분을 고려한 방안 적용 시 모의 정확도가 향상되는 것으로 확인되었다. 모형 간 비교 시, 두 방안 모두 SWAT 모형이 더 우수한 통계치를 보였으나 기법에 대한 적용 효과는 미미한 것으로 나타났다. 다만, TANK 모형은 방법론 상 물리적 특성을 구체적으로 고려하지 않고 있음에도 디지털 필터와 같은 방법 적용 시 NSE의 통계치가 17% 상승하는 결과를 보였다. 즉, 디지털 필터 기법에 대한 적용성은 TANK 모형이 더 우수한 것으로 나타났으며 본 모형과 같은 개념적 모형에 디지털 필터와 같은 수문곡선 분리 기법을 적용할 경우 물리적 모형보다 더 향상된 모의결과를 얻을 수 있을 것으로 판단된다. 이에 따라 수문모형 모의 시 총유출량만 고려하여 매개변수를 추정하는 것 보다 유출성분을 고려하여 매개변수를 추정하는 것이 정확도 높은 유출모의를 할 것으로 판단된다.

The objectives of this study propose a parameter estimation method that can consider both the total runoff and the runoff component by integrating the digital filter method and the long-term runoff models (SWAT, TANK), and evaluate the appropriateness of the applied methods. The study area is the Soyang River Dam basin, and parameter calibration and validation are performed by dividing it into a parameter estimation method considering the total runoff and a parameter estimation method considering the runoff component. In both methods, the fit between the observation and simulation runoff was excellent, and the model performance was found to be good with a coefficient of determination (R2) of 0.73~0.87, and NSE of 0.67~0.85. As a result of comparison with each method, it was confirmed that the simulation accuracy was improved when applying the method considering the runoff component in both the SWAT model and the TANK model. When comparing between the models, the SWAT model showed better statistics in both methods, but the effect of applying to the method was found to be insignificant. However, even though the TANK model did not specifically consider the physical characteristics of the methodology, the statistical value of NSE increased by 17% when integrating a method such as a digital filter. In other words, the applicability to the digital filter method was found to be better in the TANK model, and when a hydrograph separation method such as a digital filter is applied to a conceptual model such as this model, it is judged that more improved simulation results can be obtained than the physical model. Accordingly, it is judged that estimating the parameters by considering the runoff component will be more accurate than estimating the parameters by considering only the total runoff when simulating the hydrological model.

키워드

과제정보

본 연구는 한국수력원자력(주)에서 재원을 부담하여 수행한 연구결과입니다(No. H22S058000).

참고문헌

  1. Abu El-Nasr, A., Willems, P., Arnold, J., Feyen, J. (2002). "Comparison of two methods to split the total discharge in its components." In Proceedings of the Fifth International Conference on Hydroinformatics, Cardiff, UK.
  2. Arnold, J.G., and Allen, P.M. (1999). "Automated methods for estimation baseflow and ground water recharge from streamflow records." Journal of the American Water Resources Association, Vol. 35, No. 2, pp. 411-424. https://doi.org/10.1111/j.1752-1688.1999.tb03599.x
  3. Arnold, J.G., Allen, P.M., Muttiah, R.S., and Bernhardt, G. (1995). "Automated base flow separation and recession analysis techniques." Groundwater, Vol. 33, No. 6, pp. 1010-1018. https://doi.org/10.1111/j.1745-6584.1995.tb00046.x
  4. Arnold, J.G., Srinivasan, R., Muttiah, R.S., and Williams, J.R. (1998). "Large area hydrologic modeling and assessment part I: Model development." Journal of The American Water Resources Association, Vol. 31, No. 1 pp. 73-89.
  5. Bae, D.H., Jung, I.W., Kang, T.H., and Noh, J.W. (2003). "Automatic parameter estimation considering runoff components on Tank model." Jounal of Korea Water Resources Association, Vol. 36, No. 3, pp. 423-436. https://doi.org/10.3741/JKWRA.2003.36.3.423
  6. Donigian, Jr., A.S. (2000). HSPF Training workshop handbook and CD. Lecture #19. Calibration and Verification Issues, Slide #L19-22, EPA Headquarters, Washington Information Center, 10-14 January, 2000, Presented and prepared for U.S. EPA, Office of Water, Office of Science and Technology, Washington, DC., U.S.
  7. Eckhardt, K. (2005). "How to construct recursive digital filters for baseflow separation." Hydrological Processes, Vol. 19, No. 2, pp. 507-515. https://doi.org/10.1002/hyp.5675
  8. Heo, J.Y. (2021). "Assessment of artificial neural network model for real-time dam inflow prediction." Journal of Korea Water Resources Association, Vol. 54, No. 12, pp. 1131-1141. https://doi.org/10.3741/JKWRA.2021.54.S-1.1131
  9. Hong, J.Y., Lim, K.J., Shin, Y.C., and Jung, Y.H. (2015). "Quantifying contribution of direct runoff and baseflow to rivers in Han River system, South Korea." Journal of Korea Water Resources Association, Vol. 48, No. 4, pp. 3019-319.
  10. Jeong, T.M. (2021). Parameter estimation of the SWAT model by the SWAT-CUP and monthly inflow prediction of Andong reservoir using the ensemble streamflow prediction. Master Thesis, Pukyong University.
  11. Jung, H.J., and Lee, J.H. (2020). "A review on quantitative estimation of baseflow and hydrograph separation using isotopes as a tracer." Journal of the Geological Society of Korea, Vol. 56, No. 4, pp. 501-514. https://doi.org/10.14770/jgsk.2020.56.4.501
  12. Jung, I.W. (2003). A study on the applicability of long-term runoff models for Korean river basin, Master Thesis, Sejong University.
  13. Kang, T.U., and Lee, N.J. (2022). "Review on characteristics and applicability of digital filter baseflow separation methods." Journal of the Korean Society of Hazard Mitigation, Vol. 22, No. 3, pp. 195-206. https://doi.org/10.9798/KOSHAM.2022.22.3.195
  14. Kim, K.U., Song, J.H., Ahn, J.H., Park, J.H., Jun, S.M., Song, I.H., Kang, M.S. (2014). "Evaluation of the tank model optimized parameter for watershed modeling." Journal of the Korean Society of Agricultural Engineers, Vol. 56, No. 4, pp. 9-19. https://doi.org/10.5389/KSAE.2014.56.4.009
  15. Kim, N.Y., Lee, B.J., and Lee, J.E. (2007). "Sensitivity analysis of hydrologic components according to change characteristic soil." In Proceedings of the Korea Water Resources Association Conference, pp. 1548-1552.
  16. Lee, J.M., Park, Y.S., Jung, Y.H., Cho, J.P., Yang, J.E., Lee, G.J., Kim, K.S., and Lim, K.J. (2014). "Analysis of spatiotemporal changes in groundwater recharge and baseflow using SWAT and BFlow models." Journal of Korean Society on Water Environment, Vol. 30, No. 5, pp. 549-558. https://doi.org/10.15681/KSWE.2014.30.5.549
  17. Liu, Z., Kiu, S., Ye, J., Sheng, F., You, K., Xiong, X., and Lai, G. (2019). "Application of a digital filter method to separate baseflow in the small watershed of Pengchongjian in Southern China." Forests, Vol. 10, No. 12, 1065.
  18. Lott, D.A., and Stewart, M.T. (2016). "Base flow separation: A comparison of analytical and mass balance methods." Journal of Hydrology, Vol. 535, p. 525-533. https://doi.org/10.1016/j.jhydrol.2016.01.063
  19. Luo, Y., Arnold, J., J, Allen, P., and Chen, X. (2012). "Baseflow simulation using SWAT model in an inland river basin in Tianshan Mountains, Northwest China." Hydrology and Earth System Sciences, 16, pp. 1259-1267. https://doi.org/10.5194/hess-16-1259-2012
  20. Lyne, V., and Hollick, M. (1979). "Stochastic time-variable rainfall-runoff modeling." Institute Engineers Australia National Conference, Perth, Australia, Vol. 79, No. 10, pp. 89-92. 10
  21. Nathan, R.J., and Mcmahon, T.A. (1990). "Evaluation of automated techniques for base flow and recession analyses." Water Resources Research, Vol 26, No. 7, pp. 1465-1473.
  22. Neitsch, S.L., Arnold, J.G., Kiniry J.R., and Williams J.R. (2001). Soil and water assessment tool; Theoretical documentation (version 2000). USDA ARS, Temple, TX, U.S.
  23. Saleh, A., Arnold, J. Gassman, P.W.A., Hauck, L., Rosenthal, W., Williams, J., and McFarland, A. (2000). Application of SWAT for the upper north Bosque River watershed, American Society of Agricultural and Biological Engineers, Vol. 43, pp. 1077-1087. https://doi.org/10.13031/2013.3000
  24. Sloan, P.G., and Moore, I.D. (1984). "Modeling surface and subsurface stormflow on steeply-sloping forested watersheds." Water Resources Research, Vol. 20, No. 12, pp. 1815-1822. https://doi.org/10.1029/WR020i012p01815
  25. Sugawara, M. (1972). "A method for runoff analysis." Kyoritsu Shuppan Press, Tokyo, Japan (in Japanese).
  26. Xie, J., Liu, X., Wang, K., Yang T., Liang, K., and Liu, C. (2020). "Evaluation of typical methods for baseflow separation in the continuous United States." Journal of Hydrology, Vol. 583, 124628.