DOI QR코드

DOI QR Code

Analysis of food source feeding characteristics of Lepomis macrochirus an invasive species according to habitat environment

생태계교란 생물인 블루길(Lepomis macrochirus)의 서식 환경에 따른 먹이원 섭식 특성 분석

  • Jae-Hun Kim (Department of Biological Science, Andong National University) ;
  • Ji Yoon Kim (Department of Biological Science, Chungnam National University) ;
  • Sang-hyeok Oh (Department of Biology, Gangneung-Wonju National University) ;
  • Kwang-Guk An (Department of Biological Science, Chungnam National University) ;
  • Jong-Eun Lee (Department of Biological Science, Andong National University)
  • 김재훈 (안동대학교 생명과학과) ;
  • 김지윤 (충남대학교 생명과학과) ;
  • 오상혁 (강릉원주대학교 생물학과) ;
  • 안광국 (충남대학교 생명과학과) ;
  • 이종은 (안동대학교 생명과학과)
  • Received : 2024.08.07
  • Accepted : 2024.09.19
  • Published : 2024.09.30

Abstract

This study conducted field surveys targeting benthic macroinvertebrates and fish in Andong Dam and Yeongsan River, with the specific aim of analyzing bluegill stomach contents. Bluegills in Andong Dam ranged from 40-220 mm, with 93.0% between 80-220 mm, while those in Yeongsan River ranged from 50-210 mm, with 71.4% between 120-210 mm. The highest feeding rates in both sites were for Chironomidae spp., with findings of 72.6% in Andong Dam and 80.4% in Yeongsan River. In Andong Dam, H. nipponensis and Baetidae sp. were also significant at 17.5% and 6.5%, respectively, while in Yeongsan River, Baetidae sp. (7.5%) and Hymenoptera sp. were the next most common at 3.8%. The EI index showed that bluegills generally avoided H. nipponensis and S. tsuchigae (-0.373 and -0.975) whereas they preferred Chironomidae spp.(0.759, 0.892) and Baetidae sp.(0.723). The parameter b values of the total length-weight relationship of bluegill were calculated as 3.452 in Andong Dam and 3.449 in the Yeongsan River, respectively. The slope values of the condition factor were 0.0067 in Andong Dam and 0.0065 in the Yeongsan River. Both values were positive, indicating that the nutritional status of bluegill was good. Aquatic insects constituted the primary food source, particularly in Yeongsan River. Feeding patterns did not significantly differ by habitat orientation groups, but Yeongsan River bluegills consumed more diverse food sources. In Andong Dam, larger bluegills likely consume food sources with larger biomass, while Yeongsan River's diverse and abundant food sources support opportunistic feeding tailored to the water ecological environment.

본 연구는 안동댐과 영산강에서 저서성 대형무척추동물 및 어류를 대상으로 현장조사와 블루길의 위 내용물에 대한 먹이원 분석을 실시하였다. 서식지 유형에 따른 전장 범위는 안동댐에서 40~70 mm 범위는 7.0%, 80~220 mm 범위는 93.0%를 차지하였고, 영산강에서 50~100 mm 범위는 28.6%, 120~210 mm 범위는 71.4%를 차지하였다. 블루길의 먹이원 중 안동댐과 영산강에서 깔따구류(Chironomidae spp.)의 섭식률이 각각 72.6%, 80.4%로 가장 높은 것으로 나타났다. 그러나 안동댐에서는 빙어(H. nipponensis) 17.5%, 꼬마하루살이류(Batidae sp.) 6.5% 등의 순으로 나타난 반면, 영산강에서는 꼬마하루살이류 7.5%, 개미류(Hymenoptera sp.) 3.8% 등의 순으로 나타나 차이를 보이는 것으로 확인되었다. 안동댐과 영산강에서 블루길의 EI 지수 분석 결과, 빙어, 참몰개와는 각각 -0.373, -0.975의 값으로 산출되어 먹이원으로서 기피하는 경향을 보였으며, 깔따구류(0.759, 0.892), 꼬마하루살이류(0.723)에는 먹이원으로서 선호하는 경향을 보이는 것으로 나타났다. 블루길의 전장-체중 관계의 매개변수 b 값은 안동댐에서 3.452, 영산강에서 3.449로 각각 산출되었으며, 비만도 지수의 기울기 값은 안동댐 0.0067, 영산강 0.0065로 모두 양의 값을 나타내어 블루길의 영양상태는 양호한 것으로 분석되었다. 안동댐과 영산강에서 블루길의 먹이원 유형별 섭식 패턴 결과, 수서곤충의 섭식 비율이 가장 높게 나타났으며, 특히 영산강은 수서곤충의 섭식에 크게 의존하는 경향으로 나타났다. 서식기능군에 따른 섭식 패턴은 큰 차이가 없는 것으로 나타났다. 안동댐보다 영산강에서 더 다양한 먹이원을 섭식하는 것으로 나타났으며, 안동댐의 경우, 전장이 커질수록 생체량이 큰 먹이원을 섭식할 확률이 높아질 것으로 예상되며, 영산강의 경우 상대적으로 먹이원의 다양성과 풍부도가 높아 수환경 조건에 따라 기회적으로 섭식이 이루어지는 것으로 사료된다.

Keywords

References

  1. Anderson RO and RM Neumann. 1996. Length, weight and associated structural indices. pp. 447-482. In: Fisheries Techniques (Murphy BR and DW Willis, eds.). 2nd ed. Am. Fish. Soc. Bethesda, MD, USA.
  2. Anderson RO and SJ Gutreuter. 1983. Length, weight and associated structural indices. pp. 283-300. In: Fisheries Techniques (Nielsen LA and D Johnson, eds.). 1st ed. Am. Fish. Soc. Bethesda, MD, USA.
  3. Azuma M. 1992. Ecological releasae in feeding behaviour: The case of bluegills in Japan. Hydrobiologia 243:269-276. https://doi.org/10.1007/bf00007042
  4. Baek SH, SH Park and JH Kim. 2020. Estimation of standard length-weight relationships of 10 freshwater fish in the South Korea for application of relative weight index. Korean J. Ichthyol. 32:55-62. https://doi.org/10.35399/ISK.32.2.3
  5. Bates D, M Machler, B Bolker and S Walker. 2015. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67:1-48. https://doi.org/10.18637/jss.v067.i01
  6. Brodeur RD and WG Pearcy. 1992. Effects of environmental variability on trophic interactions and food web structure in a pelagic upwelling ecosystem. Mar. Ecol.-Prog. Ser. 84:101-119.
  7. Byun HK and SR Jeon. 1997. Feeding habit of Bluegill, Lepomis macrochirus introuduced in Korea. Korean J. Environ. Biol. 15:165-174.
  8. Byun HK, HB Song, SR Jeon and YM Son. 1997. Feeding habit of Bluegil, Lepomis macrochirus, introduced at Lake Paldang. Korean J. Limnol. 30:75-84.
  9. Carlson AK and MV Hoyer. 2023. Bluegill population demographics as related to abiotic and biotic factors in florida Lakes. Fishes 8:100. https://doi.org/10.3390/fishes8020100
  10. Chae BS, HB Song and JY Park. 2019. A Field Guide to the Freshwater Fishs of Korea. LG Evergreen Foundation. Seoul, Korea.
  11. Csardi G and T Nepusz. 2006. The igraph software package for complex network research. InterJ. Complex Syst. 1695:1-9.
  12. Ehlinger TJ. 1990. Habitat choice and phenotype-limited feeding efficiency in bluegill: Individual differences and trophic polymorphism. Ecology 71:886-896. https://doi.org/10.2307/1937360
  13. Froese R. 2006. Cube law, condition factor and weight-length relationships: History, meta-analysis and recommendation. J. Appl. Ichthyol. 22:241-253. https://doi.org/10.1111/j.1439-0426.2006.00805.x
  14. Han JH, CS Park, JW An, KG An and WG Baek. 2015. A Guide Book of Freshwater Fishes, 1st ed. Natl. Sci. Museum. Daejeon, Korea.
  15. Han SC, HY Lee, EW Seo, JH Shim and JE Lee. 2007. Fish fauna and weight-length relationships for 9 fish species in Andong Reservoir. J. Life Sci. 17:937-943. https://doi.org/10.5352/JLS.2007.17.7.937
  16. Harrel SL and ED Dibble. 2001. Foraging efficiency of juvenile bluegill, Lepomis macrochirus, among different vegetated habitats. Environ. Biol. Fishes 62:441-453. https://doi.org/10.1023/A:1012259922727
  17. Hynes HBN. 1970. The Ecology of Running Waters. Liverpool University Press. Liverpool, UK. p. 555.
  18. Ivlev VS. 1961. Experimental Ecology of the Feeding of Fishes. Yale University Press. New Haven, CT, USA.
  19. Jacobs J. 1974. Quantitative measurment of food selection. A modification of the forage ratio and Ivlev's electivity index. Oecologia 14:413-417. https://doi.org/10.1007/BF00384581
  20. Jung KS. 2011. Odonata Larvae of Korea. Nature and Ecology. Seoul, Korea. p. 399.
  21. Kang YJ, SJ Lee and KG An. 2019. Physical habitat and chemical water quality characteristics on the distribution patterns of ecologically disturbing fish (Largemouth bass and Bluegill) in Dongjin-River Watershed. Korean J. Environ. Biol. 37:177-188. https://doi.org/10.11626/KJEB.2019.37.2.177
  22. Kim IS. 1997. Illustrated Encyclopedia of Fauna and Flora of Korea. Vol. 37. Freshwater Fishes. Ministry of Education. Seoul, Korea. p. 629.
  23. Kim IS, Y Choi, CL Lee, YJ Lee, BJ Kim and JH Kim. 2005. Illustrated Book of Korean Fishes, 1st ed. Kyohak Publishing. Seoul, Korea.
  24. Kim JH, JY Kwon, JY Song, YK Oh, KS Kim and JW Hur. 2019. Ichthyofauna and community structure of fish in Chuncheon and Andong Reservoirs. J. Mar. Life Sci. 4:70-80. https://doi.org/10.23005/KSMLS.2019.4.2.70
  25. Kim MC, SP Chun and JK Lee. 2013. Invertebrates in Korean Freshwater Ecosystems. Geobook. Seoul, Korea. p. 483.
  26. Kwon SJ, YC Jun and JH Park. 2013. Benthic Macroinvertebrates. Nature and Ecology. Seoul, Korea. p. 791.
  27. Le Cren CD. 1951. The length-weight relationship and seasonal cycle in gonad weight and condition in Perch, Perca fluviatilis. J. Anim. Ecol. 20:201-219. https://doi.org/10.2307/1540
  28. Lee DS, DY Lee, CW Ji, IS Kwak, SJ Hwang, HJ Lee and YS Park. 2020. Impacts of introduced fishes (Carassius cuvieri, Micropterus salmoides, Lepomis macrochirus) on stream fish communities in South Korea. Korean J. Environ. Ecol. 53:241-254. https://doi.org/10.11614/KSL.2020.53.3.241
  29. ME. 1998. Enforcement Decree of the Natural Environment Conservation Act No. 15639. Ministry of Environment. Sejong, Korea.
  30. ME and NIE. 2017. Information for the Field Management of Invasive Alien Species in Korea. Ministry of Environment and National Institute of Ecology. Seocheon, Korea. p. 221.
  31. ME and NIE. 2022. Invasive Alien Species in Korea. Ministry of Environment and National Institute of Ecology. Seocheon, Korea. p. 183.
  32. Merrit RW, JR Wallace, MJ Higgins, MK Alexander, MB Berg, WT Morgan, KW Cummins and B Vandeneeden. 1996. Procedures for the functional analysis of invertebrate communities of the Kissimmee River-floodplain ecosystem. Fla. Sci. 59:216-274.
  33. Mittelbach GG. 1981. Foraging efficiency and body size: A study of optimal diet and habitat use by bluegills. Ecology 62:1370-1386. https://doi.org/10.2307/1937300
  34. R Core Team. 2023. R: A language and environment for statistical computing(Version 4.3.2).
  35. Rosenberg DM and VH Resh. 1993. Freshwater Biomonitoring and Benthic Macroinvertebrates. Chapman and Hall. New York, USA. p. 488.
  36. Sarker AL. 1977. Feeding ecology of the bluegill, Lepomis macrochrius, in two heated reservoirs of Texas. III. Time of day and patterns of feeding. Trans. Am. Fish. Soc. 106:596-601. https://doi.org/10.1577/1548 -8659(1977)106<596:FEOTBL>2.0.CO;2
  37. Schneider JC. 1999. Dynamics of quality bluegill populations in two Michigan lake with dens vegetation. North Am. J. Fish Manage. 19:97-109. https://doi.org/10.1577/1548-8675(1999)019<0097:DOQBPI>2.0.CO;2
  38. Schreck CB and PB Moyle. 1990. Methods for Fish Biology. Am. Fish. Soc. Bethesda, MD, USA. p. 684.
  39. Son YM and HB Song. 2006. Freshwater Fish of the Geumgang River. Jisung Company. Seoul, Korea. p. 128.
  40. Song HB, MS Byeon, DW Kang, CY Jang, JS Moon and HK Park. 2012. Population structure of bluegill, Lepomis macrochirus in Lakes of the Han River System. Korean J. Ichthyol. 24:278-286.
  41. Taylor BE, MA John, LM Diane and AE Ruth. 1991. Population dynamics and food habits of bluegill (Lepomis macrochirus) in a thermally stressed reservoir. Can. J. Fish. Aquat. Sci. 48: 768-775. https://doi.org/10.1139/f91-092
  42. Wipfli MS and CV Baxter. 2010. Linking ecosystems, food webs, and fish production: subsidies in salmonid watersheds. Fisheries 35:12-26. https://doi.org/10.1577/1548-8446-35.8.373
  43. Won DH, SJ Kwon and YC Jun. 2005. Aquatic Insect of Korea. Korea Ecosystem Service. Seoul, Korea. p. 415.
  44. Wootton RJ. 2012. Ecology of Teleost Fishes. Vol. 1. Chapman & Hall, New York, USA. p. 404.
  45. Yang HJ and BS Chae. 1997. Ecological study on the bluegill, Lepomis macrochirus Rafinesque, in Andong-Dam Reservoir. Korean J. Limnol. 30:135-143.
  46. Yoon IB. 1988. Illustrated Encyclopedia of Fauna & Flora of Korea. Vol. 30. Aquatic Insects. State-Compiled Textbook Company Limited. Seoul, Korea. p. 840.
  47. Yoon IB. 1995. Aquatic Insects of Korea. Junghaengsa. Seoul, Korea. p. 262.