DOI QR코드

DOI QR Code

한국 연안에 출현하는 Aidanosagitta crassa 형태 유형에 따른 분류학적 고찰 및 계절별 출현 특성

Seasonal occurrence characteristics of Aidanosagitta crassa morphotypes in coastal waters of Korea

  • 추서휘 (전남대학교 빅데이터수산자원관리협동과정) ;
  • 정만기 (전남대학교 스마트수산자원관리학과) ;
  • 서민호 (바다생태연구소(주)) ;
  • 정영석 (전남대학교 환경해양학과) ;
  • 박종준 (전남대학교 해양융합과학과) ;
  • 신아영 (전남대학교 해양융합과학과) ;
  • 서호영 (전남대학교 빅데이터수산자원관리협동과정)
  • Seohwi Choo (Interdisciplinary Program of Bigdata Fishery Resources Management, Chonnam National University) ;
  • Man-Ki Jeong (Department of Smart Fisheries Resources Management, Chonnam National University) ;
  • Min Ho Seo (Marine Ecology Research Center) ;
  • Young Seok Jeong (Department of Environmental Oceanography, Chonnam National University) ;
  • Jongjun Park (Department of Ocean Integrated Science, Chonnam National University) ;
  • A-Young Shin (Department of Ocean Integrated Science, Chonnam National University) ;
  • Ho Young Soh (Interdisciplinary Program of Bigdata Fishery Resources Management, Chonnam National University)
  • Received : 2024.07.05
  • Accepted : 2024.09.09
  • Published : 2024.09.30

Abstract

한국 연안 해역의 핵심 종인 Aidanosagitta crassa는 세 가지 형태적 유형을 보인다. 지느러미의 포상조직이 머리부터 꼬리까지 분포하고 있는 C형, 포상조직이 몸 일부에만 분포하는 N형, 그리고 C형과 N형의 중간 형태인 I형이다. 유형에 따른 A. crassa의 출현 특성에 대한 생태적인 연구가 부족하기 때문에 이 연구에서는 A. crassa 유형의 계절적 발생 패턴을 밝히고자 했다. 평택항의 여섯 정점에서 현장 조사는 2010년 겨울(2월), 봄(5월), 여름(8월), 가을(11월)에 실시하였다. 수온과 염분을 측정하였으며, 동물플랑크톤을 수집하였다. A. crassa C형은 겨울과 가을에, I형은 여름에, N형은 여름과 가을에 우점하는 경향을 보였다. 이들의 출현은 수온에 큰 영향을 받은 것으로 확인되었다. 각 유형별로 C형은 음의 상관관계를 보였고, N형은 양의 상관관계를 보였으며, I형은 유의한 상관관계를 보이지 않았다. 2013년에는 mtCOI 마커를 이용한 분자생물학적 분석이 겨울과 여름에 실시되었다. 형태학적 차이에도 불구하고, 유형 간의 유전적 분석 결과는 계절적 환경 변화로 인한 종내 다양성임을 보였다.

Aidanosagitta crassa, a key species in South Korea's coastal waters, exhibits three morphological types: Type C with a collarette-containing trunk, Type N lacking a collarette, and an intermediate Type I. Limited research studies have been conducted on their ecological patterns, prompting this study to elucidate seasonal occurrence patterns of A. crassa types in Pyeongtaek. Field surveys at six stations in Pyeongtaek port were conducted in winter (Feb.), spring (May), summer (Aug.), and autumn (Nov.) of 2010. Water temperature and salinity were measured and zooplankton samples were collected for abundance analysis. Type C predominated in winter and autumn. Type I predominated in summer and Type N predominated in summer and autumn. Occurrence patterns were influenced by water temperature. Type C showed a negative correlation with water temperature. Type N was positively correlated with water temperature. However, Type I showed no significant correlation with water temperature. In 2013, genetic sampling using the mtCOI marker was conducted in winter and summer. Despite morphological differences, genetic analysis revealed intraspecific diversity due to seasonal environmental changes.

Keywords

Acknowledgement

본 논문은 2024년 환경부의 재원으로 국립생물자원관의 지원(NIBRE202405)과 해양수산부 재원으로 해양수산과학기술진흥원의 지원(RS-2018-KS181192, 수산전문인력양성)을 받아 수행된 연구입니다.

References

  1. Alvarino A. 1967. The Chaetognatha of the NAGA Expedition (1959-1961) in the South China Sea and the Gulf of Thailand. 1. Systematics. NAGA Rep. 4:1-197.
  2. Choo S, MK Jeong and HY Soh. 2022. Taxonomic reassessment of chaetognaths (Chaetognatha, Sagittoidea, Aphragmophora) from Korean waters. Zookeys 1106:165-211. https://doi.org/10.3897/zookeys.1106.80184
  3. Drummond AJ, B Ashton, S Buxton, M Cheung, A Cooper, C Duran, M Field, J Heled, M Kearse, S Markowitz, R Moir, S Stones-Havas, S Sturrock, T Thierer and A Wilson. 2010. Geneious v6.1.6. http://www.geneious.com. Accessed July 30, 2013.
  4. Folmer O, M Black, W Hoeh, R Lutz and R Vrijenhoek. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3:294-299.
  5. Gasmi S, G Neve, N Pech, S Tekaya, A Gilles and Y Perez. 2014. Evolutionary history of Chaetognatha inferred from molecular and morphological data: A case study for body plan simplification. Front. Zool. 11:1-25. https://doi.org/10.1186/s12983-014-0084-7
  6. Grigor JJ, MS Schmid, M Caouette, VS Onge, TA Brown and RM Barthelemy. 2020. Non-carnivorous feeding in Arctic chaetognaths. Prog. Oceanogr. 186:102388. https://doi.org/10.1016/j.pocean.2020.102388
  7. Hirota R. 1959. On the morphological variation of Sagitta crassa. J. Oceanogr. Soc. Jpn. 15:191-202.
  8. Karati KK, G Vineetha, RP Devassy, AM Al-Aidaroos and MM El-Sherbiny. 2022. Role of ecohydrographical barriers on the spatio-temporal distribution of Chaetognath community in the Gulf of Aqaba during summer. Water 14:822. https://doi.org/10.3390/w14050822
  9. Kim WR. 1987. Taxonomical study on the chaetognaths in Korean waters. M.S. Thesis. University of Hanyang. Seoul, Korea.
  10. Kitou M. 1967. Chaetognatha. pp. 40-51. In: Illustration Book of Japanese Marine Plankton (Motoda S, ed.). Soyo-sha. Tokyo, Japan.
  11. Kruse S, T Brey and U Bathmann. 2010. Role of midwater chaetognaths in Southern Ocean pelagic energy flow. Mar. Ecol. Prog. Ser. 416:105-113. https://doi.org/10.3354/meps08773
  12. Kulagin DN, AN Stupnikova, TV Neretina and NS Mugue. 2014. Spatial genetic heterogeneity of the cosmopolitan chaetognath Eukrohnia hamata (Mobius, 1875) revealed by mitochondrial DNA. Hydrobiologia 721:197-207. https://doi.org/10.1007/s10750-013-1661-z
  13. Liang TH and LA Vega-Perez. 1995. Studies on chaetognaths off Ubatuba region, Brazil. II. Feeding habits. Bol. Inst. Oceanogr. 43:35-48. https://doi.org/10.1590/S0373-55241995000100003
  14. Miyamoto H, RJ Machida and S Nishida. 2010. Genetic diversity and cryptic speciation of the deep sea chaetognath Caecosagitta macrocephala (Fowler, 1904). Deep-Sea Res. II: Top. Stud. Oceanogr. 57:2211-2219. https://doi.org/10.1016/j.dsr2.2010.09.023
  15. Muller CH, S Harzsch and Y Perez. 2019. Chaetognatha. pp. 163-282. In: Miscellaneous Invertebrates (Schmidt-Rhaesa A, ed.). Handbook of Zoology. De Gruyter. Berlin, Germany. https://doi.org/10.1515/9783110489279-007
  16. Murakami A. 1957. Value of chaetognaths preferring low salinity as indicator forms of water masses. Bull. Plankton Soc. Jpn. 5:8-10.
  17. Murakami A. 1959. Marine biological study of the planktonic chaetognaths in the Seto Inland Sea. Bull. Naikai Reg. Fish. Res. Lab. 12:1-186.
  18. Murakami A. 1966. Rearing experiments of Chaetognatha, Sagitta crassa. Inf. Bull. Planktol. Soc. Jpn. 13:62-65.
  19. Oksanen J, G Simpson, F Blanchet, R Kindt, P Legendre, P Minchin, R O'Hara, P Solymos, M Stevens, E Szoecs, H Wagner, M Barbour, M Bedward, B Bolker, D Borcard, G Carvalho, M Chirico, M De Caceres, S Durand, H Evangelista, R FitzJohn, M Friendly, B Furneaux, G Hannigan, M Hill, L Lahti, D McGlinn, M Ouellette, E Ribeiro Cunha, T Smith, A Stier, C Ter Braak and J Weedon. 2022. vegan: Community ecology package. R package version 2.6-4.
  20. Park JS. 1967. Note sur les chaetognathes indicateurs planctoniques dans la mer Coreenne en hiver. J. Oceanogr. Soc. Korea. 2:34-41.
  21. Park JS. 1970. The chaetognaths of Korean waters. Ph.D. dissertation. Pukyong National University. Busan, Korea. 
  22. Peijnenburg KTCA, EK van Haastrecht and C Fauvelot. 2005. Present-day genetic composition suggests contrasting demographic histories of two dominant chaetognaths of the North-East Atlantic, Sagitta elegans and S. setosa. Mar. Biol. 147:1279-1289. https://doi.org/10.1007/s00227-005-0041-2
  23. Pierrot-Bults AC. 2017. Chaetognatha. pp. 551-560. In: Marine Plankton(Castellani C and M Edwards, eds.). Oxford University Press. Oxford, UK.
  24. R Core Team. 2024. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org. Accessed September 3, 2024.
  25. Srinivasan M. 1979. Taxonomy and ecology of Chaetognatha of the west coast of India in relation to their role as indicator organisms of water masses. Zool. Surv. India Techn. Monogr. 3:1-47.
  26. Thomson JM. 1947. The Chaetognatha of South-Eastern Australia. Bull. Counc. Sci. Ind. Res. 222:4-43.
  27. Tokioka T. 1940. Phylum Chaetognatha. pp. 1-129. In: Fauna Nipponica. Vol. 5. Sanseido. Tokyo, Japan.
  28. Tokioka T. 1965. The taxonomical outline of Chaetognatha. Publ. Seto Mar. Biol. Lab. 12:335-357.
  29. Tokioka T. 1974. Morphological differences observed between the generations of the same chaetognath population. Publ. Seto Mar. Biol. Lab. 21:269-279.
  30. Ulloa R, S Palma and N Silva. 2000. Bathymetric distribution of chaetognaths and their association with water masses off the coast of Valparaiso, Chile. Deep-Sea Res. I: Oceanogr. Res. Pap. 47:2009-2027. https://doi.org/10.1016/S0967-0637(00)00020-0
  31. Uye SI and D Liang. 2022. Seasonal population dynamics, production, and feeding of the chaetognath Aidanosagitta crassa in a temperate eutrophic inlet. Plankton Benthos Res. 17:312-326. https://doi.org/10.3800/pbr.17.312
  32. Wickham H. 2007. Reshaping data with the reshape package. J. Stat. Softw. 21:1-20. https://doi.org/10.18637/jss.v021.i12
  33. Wickham H. 2016. ggplot2. Elegant Graphics for Data Analysis. Springer. Cham, Switzerland. https://doi.org/10.1007/978-3-319-24277-4
  34. Wickham H, R Francois, L Henry, K Muller and D Vaughan. 2023. dplyr: A grammar of data manipulation. R package version 1.1.3. https://CRAN.R-project.org/package=dplyr. Accessed December 14, 2023.
  35. WoRMS Editorial Board. 2024. World Register of Marine Species. Vlaams Instituut voor de Zee. https://www.marinespecies.org. Accessed September 3, 2024. https://doi.org/10.14284/170