DOI QR코드

DOI QR Code

Change in Statistical Characteristics and Spatial Variability of Cone Tip Resistance Due to Ground Improvement

지반개량에 따른 콘 선단저항값의 통계적 특성 및 공간 변동성 변화

  • Bong, Tae-Ho (Dept. of Forest Science, Chungbuk National Univ.) ;
  • Kim, Byoung-Il (Dept. of Civil & Environmental Eng., Myongji Univ.) ;
  • Park, Shin Young (HJ Shipbuilding & Construction Co., Ltd.)
  • 봉태호 (충북대학교 산림학과) ;
  • 김병일 (명지대학교 토목환경공학과) ;
  • 박신영 (HJ중공)
  • Received : 2024.06.03
  • Accepted : 2024.10.04
  • Published : 2024.10.31

Abstract

Ground improvement techniques through soil densification are widely used to enhance the cyclic resistance and seismic performance of liquefiable soils. However, most studies have primarily focused on the increase in soil strength before and after ground improvement, with limited investigation into changes in spatial statistical characteristics. This study aims to identify the changes in soil strength and spatial variability due to ground improvement by analyzing data from 19 cases where ground improvement was conducted using timber piles, aggregate piers, and dynamic compaction, with a cone penetration test (CPT) performed pre- and post-improvement. The changes in cone tip resistance were evaluated by comparing cone tip resistance profiles before and after ground improvement, while changes in spatial variability were assessed by examining variations in three parameters of the random field: mean (or trend function), variance, and scale of fluctuation. The results indicate that cone tip resistance generally increased, while inherent variability tended to decrease. The scale of fluctuation, representing spatial autocorrelation, generally increased following ground improvement, with higher initial fluctuation parameters correlating with a greater rate of increase. Furthermore, the probabilistic analysis of liquefaction-induced settlement revealed that changes in the scale of fluctuation due to ground improvement significantly influenced the variability of settlement, underscoring the importance of considering this factor.

지반 조밀화에 의한 지반개량 공법은 지반의 반복저항 강도를 증가시켜 액상화 발생을 억제하는 기술로 널리 활용되고 있다. 그러나 지반개량 효과는 지반개량 전, 후 콘 선단저항값의 증가에만 초점이 맞춰져 있으며 이에 대한 공간 통계학적 특성 변화에 대한 규명은 이루어지지 않았다. 본 연구에서는 지반개량에 따른 지반 강도 증가 및 이에 따른 공간 변동성 변화를 규명하기 위하여 지반개량 전, 후 CPT(Cone Penetration Test)가 수행된 나무말뚝, 쇄석말뚝, 동다짐 공법에 의한 지반개량 사례에 대하여 총 19개소에 대한 자료를 수집하고 분석하였다. 지반개량에 따른 콘 선단저항값의 변화는 지반개량 전, 후 콘 선단저항값의 프로파일을 비교하였으며, 공간 변동성 변화는 랜덤필드 이론을 활용하여 평균(또는 추세 함수), 분산, 변동자의 세 가지 매개변수에 대한 변화를 평가하였다. 결과적으로 콘 선단저항값은 평균적으로 증가하였으며 고유한 변동성은 감소하는 경향을 나타내었다. 공간적 자기상관성을 나타내는 변동자는 지반개량 후 평균적으로 증가하였으며 초기 변동자가 낮을수록 증가율은 높게 나타났다. 또한, 액상화에 의해 유발되는 침하량에 대한 확률론적 해석을 수행한 결과, 지반개량에 따른 변동자 변화는 침하량의 변동성에 유의미한 영향을 미치며 이에 대한 고려가 필요한 것으로 나타났다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2022R1A2C4002583).

References

  1. Bennett, R. J. (1979), "Spatial Time Series: Analysis, Forecasting and Control", London: Pion.
  2. Bong T. H. and Kim, B. I. (2017), "Probabilistic Analysis of Liquefaction Induced Settlement Considering the Spatial Variability of Soils", Journal of the Korean Geotechnical Society, Vol.33, No.5, pp.25-35.
  3. Bong, T. H. and Stuedlein, A. W. (2018a), "Effect of Cone Penetration Conditioning on Random Field Model Parameters and Impact of Spatial Variability on Liquefaction-induced Differential Settlements", Journal of Geotechnical and Geoenvironmental Engineering, Vol.144, No.5, 04018018.
  4. Bong, T. H. and Stuedlein, A. W. (2018b), "Efficient Methodology for Probabilistic Analysis of Consolidation Considering Spatial Variability", Engineering Geology, Vol.237, pp.53-63.
  5. Bong, T. H., Kim, S. R., and Yoo, B. S. (2019), "Changes in Physical Properties of Soil by Ground Improvement for Liquefaction Mitigation", Proceedings of the Korean Geotechical Society Conference (Spring), Korea.
  6. Bong, T. H., Son, Y. H., Noh, S. K., and Park, J. S. (2014), "Probabilistic Analysis of Consolidation that Considers Spatial Variability Using the Stochastic Response Surface Method", Soils and Foundations, Vol.54, No.5, pp.917-926.
  7. Boulanger, R. W. and Idriss, I. M. (2014), CPT and SPT based liquefaction Triggering Procedures, Report No. UCD/CGM-14/01, Center for Geotechnical Modeling, Department of Civil and Environmental Engineering, University of California, Davis, CA.
  8. Cho, K. H., Kim, H. J., Park, Y. H., and Bae, K. T. (2011), "Evaluation of Liquefaction Mitigation of RAP (Rammed Aggregate Piers)", Journal of The Korean Society of Hazard Mitigation, Vol.11, No.6, pp.175-181.
  9. DeGroot, D. J. and Baecher, G. B. (1993), "Estimating Autoconvariance of In-situ Soil Properties", Journal of Geotechnical and Geoenvironmental Engineering, Vol.119, No.1, pp.147-166.
  10. Elkateb, T., Chalaturnyk, R., and Robertson, P. K. (2003), "An Overview of Soil Heterogeneity: Quantification and Implications on Geothchnical Field Problems", Canadian Geotechnical Journal, Vol.40, No.1, pp.1-15.
  11. Griffiths, D. V., Huang, J., and Fenton, G. A. (2009), "Influence of Spatial Variability on Slope Reliability Using 2-D Random Fields", Journal of Geotechnical and Geoenvironmental Engineering, Vol.135, No.10, pp.1367-1378.
  12. Guan, Z. and Wang, Y. (2022), "CPT-based Probabilistic liquefaction Assessment Considering Soil Spatial Variability, Interpolation Uncertainty and Model Uncertainty", Computers and Geotechnics, Vol.141, 104504.
  13. Hwang, Y. W., Dashti, S., and Kirkwood, P. (2021), "Impact of Ground Densification on the Response of Urban Liquefiable Sites and Structures", Journal of Geotechnical and Geoenvironmental Engineering, Vol.148, No.1, 04021175.
  14. Jaksa, M. B. (1995), The Influence of Spatial Variability on the Geotechnical Design Properties of a Stiff, Overconsolidated Clay, Ph.D. Thesis, University of Adelaide, Australia.
  15. Jaksa, M. B., Jaksa, M. B., Brooker, P. I., and Kaggwa, W. S. (1997), "Inaccuracies Associated with Estima-tion of Random Measurement Errors", Journal of Geotechnical and Geoenvironmental Engineering, Vol.123, No.5, pp.393-401.
  16. Jiang, S. H., Liu, X., and Huang, J. (2022), "Non-intrusive Reliability Analysis of Unsaturated Embankment Slopes Accounting for Spatial Variabilities of Soil Hydraulic and Shear Strength Parameters", Engineering with Computers, Vol.38, pp.1-14.
  17. Kim, J. K. and Chae, Y. S. (2006), "A Study on the Evaluation of the Effect of the Ground Improvement of Reclaimed Land Based on Dynamic Compaction Method", Journal of the Korean Geotechnical Society, Vol.22, No.5, pp.13-26.
  18. Lee, S., Chae, J. S., and Park, S. K. (2001), "Reduction Effect of liquefaction by Vibro-Replacement Stone Columns", Proceedings of the Korean Society for Railway Conference (Spring), pp.443-450.
  19. Lumb, P. (1974), "Chapter 3: Applications of Statistics in Soil Mechanics", Soil Mechanics - New Horizons, Lee, I.K., Editor, American Elsevier, New York, pp.44-111.
  20. Mayne, P. W. (2007), "Cone Penetration Testing" NCHRP Synthesis 368: Transportation Research Board, Washington, DC.
  21. Olarte, J. C., Dashti, S., Liel, A. B., and Paramasivam, B. (2018), "Effects of Drainage Control on Densification as a Liquefaction Mitigation Technique", Soil Dynamics and Earthquake Engineering, Vol.110, pp.212-231.
  22. Phoon K. K. and Kulhawy, F. H. (1999), "Characterization of Geotechnical Variability", Canadian Geotechnical Journal, Vol.36, No.4, pp.612-624.
  23. Phoon, K. K., Quek, S. T., and An, P. (2003), "Identification of Statistically Homogenous Soil Layers Using Modified Bartlett Statistics", Journal of Geotechnical and Geoenvironmental Engineering, Vol.129, No.7, pp.649-659.
  24. Popescu, R., Deodatis, G., and Nobahar, A. (2005), "Effects of Random Heterogeneity of Soil Properties on Bearing Capacity", Probabilistic Engineering Mechanics, Vol.20, No.4, pp.324-341.
  25. Rollins, K., Wright, A., Sjoblom, D., White, N., and Lange, C. (2012), CPT Evaluation of Liquefaction Miti-gation with Stone Columns in Interbedded Soils, UDOT Report No. UT-12.15, Brigham Young University.
  26. Saftner, D. A., Zheng, J., Green, R. A., Hryciw, R. D., and Wissmann, K. J. (2018), "Rammed Aggregate Pier in-stallation Effect on Soil Properties", Proceedings of the Institution of Civil Engineers: Ground Improvement, Vol.171, No.2, pp.63-73.
  27. Salem, Z. B., Frikha, W., and Bouassida, M. (2017), "Effects of Densification and Stiffening on Liquefaction Risk of Reinforced Soil by Stone Columns", Journal of Geotechnical and Geoenvironmental Engineering, Vol.143, No.10, 06017014.
  28. Saygili, G. (2017), "Probabilistic Assessment of Soil Liquefaction Considering Spatial Variability of CPT measurements", GeoRisk, Vol.11, No.2, pp.197-207.
  29. Seed, H. B. and Idriss, I. M. (1971), "Simplified Procedure for Evaluating Soil Liquefaction Potential", Journal of the Soil Mechanics and Foundation Division, Vol.97, No.9, pp.249-1273.
  30. Stuedlein, A. W. and Allen, M. L. (2018), "A Case History of Liquefaction Mitigation using Driven Dis-placement Piles", Proceedings of IFCEE 2018 Conference, Orlando, FL, USA.
  31. Stuedlein, A. W. and Bong, T. H. (2017), "Effect of Spatial Variability on Static and Liquefaction-Induced Differential Settlements", Proceedings of Geo-Risk 2017 Conference, ASCE, pp.31-51.
  32. Stuedlein, A. W., Gianella, T. N., and Canivan, G. (2016), "Densification of Granular Soils Using Conventional and Drained Timber Displacement Piles", Journal of Geotechnical and Geoenvironmental Engineering, Vol.142, No.12, 04016075.
  33. Stuedlein, A. W., Kramer, S. L., Arduino, P., and Holtz, R. D. (2012), "Geotechnical Characterization and Random Field Modeling of Desiccated Clay", Journal of Geotechnical and Geoenvironmental Engineering, Vol.138, No.11, pp.1301-1313.
  34. Uzielli, M., Vannucchi, G., and Phoon, K. K. (2005), "Random Field Characterisation of Stress-normalised Cone Penetration Testing Parameters", Geotechnique, Vol.55, No.1, pp.3-20.
  35. Vanmarcke, E. H. (1977), "Probabilistic Modeling of Soil Profiles", Journal of the Geotechnical Engineering Division, 103(GT11), pp.1227-1246.
  36. Vanmarcke, E. H. (1983), Random Fields: Analysis and Synthesis, MIT Press, Cambridge, MA, USA.
  37. Wissmann, K. J., van Ballegooy, S., Metcalfe, B. C., Dismuke, J. N., and Anderson, C. K. (2015), "Rammed Aggregate Pier Ground Improvement as a Liquefaction Mitigation Method in Sandy and Silty Soils," Proceedings of 6th Int. Conf. on Earthquake Geotech., Christchurch, New Zealand.
  38. Yang, H. Liu, Z., and Xie, Y. (2023), "Probabilistic Liquefaction Assessment Based on an In-situ State Parameter Considering Soil Spatial Variability and Various Uncertainties", KSCE Journal of Civil Engineering, Vol.27, pp.4228-4239.
  39. Yoshimine, M., Nishizaki, H., Amano, K., and Hosono, Y. (2006), "Flow Deformation of Liquefied Sand under Constant Shear Load and its Application to Analysis of Flow Slide of Infinite Slope", Soil Dynamics and Earthquake Engineering, Vol.26, No.2-4, pp. 253-264.