DOI QR코드

DOI QR Code

Seasonal Changes in Phytoplankton Community Associated with Marine Environmental Factors in the Yellow Sea in 2019

2019년 황해 해역에서 계절적 해양 환경특성에 따른 식물플랑크톤 군집 구조 변화양상

  • Kyung-Woo Park (Oceanic Climate & Ecology Research Division, National Institute of Fisheries Science) ;
  • Tae-Gyu Park (Oceanic Climate & Ecology Research Division, National Institute of Fisheries Science) ;
  • Hyo-Keun Jang (Oceanic Climate & Ecology Research Division, National Institute of Fisheries Science) ;
  • Man-Ho Yoo (HAERANG Technology and Policy Research Institute) ;
  • Kwang-Seok O (Hae On Plankton Ecology Research Institute) ;
  • Seok-Hyun Youn (Oceanic Climate & Ecology Research Division, National Institute of Fisheries Science)
  • 박경우 (국립수산과학원 기후변화연구과 ) ;
  • 박태규 (국립수산과학원 기후변화연구과 ) ;
  • 장효근 (국립수산과학원 기후변화연구과 ) ;
  • 유만호 ((주)해랑기술정책연구소 ) ;
  • 오광석 (해온부유생태연구소) ;
  • 윤석현 (국립수산과학원 기후변화연구과 )
  • Received : 2024.08.08
  • Accepted : 2024.08.29
  • Published : 2024.08.31

Abstract

We carried out a field survey to analyze the spatial distributions of phytoplankton communities at 15 stations in the Yellow Sea in 2019. Diatoms exhibited a high appearance rate in winter and spring, whereas small flagellates(<20 ㎛) showed a high appearance rate in summer and autumn. This change in the phytoplankton-community structure may be ascribed to low nutrient concentrations in the area, especially of phosphate, which was below the detection limit, seriously hampering the phytoplankton growth. The composition ratio of picophytoplankton was high in the surface mixed layer in summer and autumn when the water columns exhibited strong stratification. Redundancy analysis revealed strong negative correlations between nutrients (NO3-, PO43-) and water depth. In conclusion, the reduction in nutrients in the surface mixed layer owing to the strengthening of stratification in summer and autumn creates favorable conditions for the growth of relatively small phytoplankton with low nutrient requirements, leading to a shift towards a smaller phytoplankton-community structure.

황해 식물플랑크톤의 계절별 군집 구조와 해양환경 요인과의 상관관계를 파악하기 위하여 2019년 계절별로 15개 정점에 대해 조사하였다. 동계와 춘계에는 규조류가 높은 출현율을 나타내었으며, 하계와 추계에는 20㎛ 이하의 미동정 미소편모조류가 높은 출현율을 나타내었다. 이는 낮은 농도의 영양염류로 인한 것으로, 특히 인산염의 경우 검출 한계까지 낮게 나타남에 따라 식물플랑크톤 성장에 심각한 저해 현상을 가져온 것으로 판단된다. 성층이 강화되는 하계와 추계 표층 혼합층에서 초미소형 크기의 식물플랑크톤 기여도가 높았으며, 중복분석 결과 초미소형 크기의 식물플랑크톤은 영양염(질산염, 인산염) 및 수심에 대해 강한 음의 상관성을 나타내고 있었다. 결론적으로 하계와 추계 성층 강화로 인한 표층 혼합층 내에서의 영양염 감소는 영양염류의 요구량이 낮은 상대적으로 크기가 작은 식물플랑크톤 성장에 유리한 환경을 제공하며, 식물플랑크톤 군집 구조는 소형화가 진행된 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 국립수산과학원 "유해생물 수산피해 대응 연구(R2024040)"의 일환으로 수행되었으며, 현장 조사 및 분석에 협조해 주신 탐구 8호 승무원 및 과제 관련 연구원들게 감사드립니다.

References

  1. Agawin, N. S. R., C. M. Duarte, and S. Agusti(2000), Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production, Limnol. Oceanogr., Vol. 45, pp. 591-600. 
  2. Arrigo, K. R. and G. L. V. Dijken(2015), Continued increases in Arctic Ocean primary productivity, Prog. Oceanogr., Vol. 136, pp. 60-70. 
  3. Asaoka, O.(1980), Distribution of Melosira sulcata (Ehrenberg) Kutzing, adiatom species, in the seas west of Japan, Oceanography Magazine, Vol. 31, pp. 1-13. 
  4. Beardsley, R. C., R. Limeburner, H. Yu, and G. A. Cannon(1985), Discharge of the Changjiang (Yangtze River) into the East China Sea, Cont. Shelf Res., Vol 4, pp. 57-76. 
  5. Byun, S. K. and K. I. Chang(1988), Tsushima Current Water at entrance of the Korea strait in Autumn, Prog. Oceanog, Vol. 21, pp. 295-306. 
  6. Chang, J., K. H. Lin, K. M. Chen, G. C. Gong, and K. P. Chiang(2003), Synechococcus growth and mortality rates in the East China Sea: range of variations and correlation with environmental factors, Deep Sea Res. Part 2 Top Stud. Oceanogr. Vol. 50, pp. 1265-1278. 
  7. Chen, Y. L., H. Lu, F. Shiah, G. Gong, K. Liu, and J. Kanda(1999), New production and f-ratio on the continental shelf of the East China Sea: comparisons between nitrate inputs from the subsurface Kuroshio Current and the Changjiang River, Estuar. Coastal Shelf Sci., Vol. 48, pp. 59-75. 
  8. Choi, H. C., Y. S. Kang, and I. S. Jeon(2004) Phytoplankton community in adjacent waters of Ulchin nuclear power plant, Korean J. Environ. Biol., Vol. 22, pp. 426-437. 
  9. Choi, J. K.(1991) The influence of the tidal front on primary productivity and distribution of phytoplankton in the mid-eastern coast of Yellow Sea, The Jounal of the Oceanological Society of Korea, Vol. 26, No3. pp. 223-241. 
  10. Choi, J. K., J. H. Noh, K. S. Shin, and K. H. Hong(1995), The early autumndistribution of chlorophyll-a and primary productivity in the Yellow Sea, Yellow Sea, Vol. 1, pp. 68-80. 
  11. Choi, J. K. and J. H. Shim(1988) The Ecological study of phytoplankton in Kyeonggi Bay, Yellow Sea. The Successional Machanism and the IV Structure of the Phytoplankton Community, J. Plankton. Oceanological Society of Korea, Vol. 23, pp. 1-12. 
  12. Choi, J. K.(2002), Phytoplankton Ecology in the Yellow Sea. In: Ecology of Korea, edited by Lee D., Bumwoo Publishing Company, Seoul, Korea, pp. 311-330. 
  13. Choi, J. K., Shim, J. H.(1986), The ecological study of phytoplankton in Kyeonggi Bay, Yellow Sea. 3. Phytoplankton composition, standing crops, tychopelagic plankton. Hangug Haeyang Haghoeji, 21, pp. 156-170. 
  14. Dortch, Q. and T. E. Whitledge(1992), Does nitrogen or silicon limit phytoplankton production in the Mississippi River plume and nearby regions?, Cont. Shelf Res., Vol. 12, pp. 1293-1309. 
  15. Falkowski, P. G. and J. A. Raven(1997), Aquatic Photosynthesis, 2nd ed. Princeton University Press. Princeton, NJ. 
  16. Furuya, K., K. Kurita, and T. Odate(1996), Distribution of phytoplankton in theEast China Sea in the winter of 1993, Journal of Oceanography, Vol. 52, pp. 323-333. 
  17. Gong, G. C., Y. L. L. Chen, and K. K. Liu(1996), Chemical hydrography and chlorophyll a distribution in the East China Sea in summer: implications in nutrients dynamics, Cont. Shelf Res., Vol. 16, pp. 1561-1590. 
  18. Hays, G. C., J. R. Anthony, and R. Carol(2005), Climate change and marine plankton, Trends Ecol. Evol., Vol. 20, pp. 337-344. 
  19. Joo, H. T., S. H. Son, J. W. Park, J. J. Kang, J. Y. Jeong, C. I. Lee, C. K. Kang, and S. H. Lee(2016), Long-term pattern of primary productivity in the East/Japan Sea based on ocean color data derived from MODIS-aqua, Remote Sens, Vol. 8, 25. 
  20. Joo, H. T., S. Son, J. W. Park, J. J. Kang, J. Y. Jeong, J. I. Kwon, C. K. Kang, and S. H. Lee(2017), Small phytoplankton contribution to the total primary production in the highly productive Ulleung Basin in the East/Japan Sea, Deep-Sea Res Pt II, Vol. 143, pp. 54-61. 
  21. Kang, Y. S., H. C. Choi, J. H. Noh, J. K. Choi, and I. S. Jeon(2006), Seasonal variation of phytoplankton community structure in northeast ern coastal waters off the Korean Peninsula, Algae, Vol. 21 pp. 83-90. 
  22. Kang, Y. S., H. C. Choi, J. W. Lim, I. S. Jeon, and J. H. Seo(2005). Dynamics of the phytoplankton community in the coastal waters of Chuksan harbor, East Sea, Algae, Vol. 20 pp. 345-352. 
  23. Kim, K., H. K. Rho, and S. H. Lee(1991), Water masses and circulation around Cheju-Do in summer. J. Kor. Soc. Oceanogr., Vol 26, pp. 262-277. 
  24. Kim, Y. J., S. H. Youn, H. J. Oh, H. T. Joo, H. K. Jang, Kang, D. B. Lee, N. E. Jo, K. W. Kim, S. H. Park, J. H. Kim, and S. H. Lee(2022), Seasonal compositions of size-fractionated surface phytoplankton communities in the Yellow Sea, Journal of Marine Science and Engineering, Vol. 10, No. 8, 1087. 
  25. Lee, S. H., B. K. Kim, Y. J. Lim, H. T. Joo, J. J. Kang, D. Lee, J. Park, S. Y. Ha, and Lee S. H.(2017b), Small phytoplankton contribution to the standing stocks and the total primary production in the Amundsen Sea, Biogeosciences, Vol. 14, No. 15, 3705. 
  26. Lee, S. H., H. T. Joo, J. H. Lee, J. H. Lee, J. J. Kang, H. W. Lee, and C. K. Kang(2017a), Seasonal carbon uptake rates of phytoplankton in the northern East/Japan Sea, Deep-Sea Res Pt II, Vol. 143, pp. 45-53. 
  27. Lee, Y. J.(2012), Phytoplankton dynamics and primary production in the Yellow Sea during winter and summer, Ph.D. Thesis, Inha University, Incheon, 218pp. 
  28. Lee, Y. J., J. K. Choi, S. H. Youn, and S. M. Roh(2014), Influence of the physical forcing of different water masses on the spatial and temporal distributions of picophytoplankton in the northern East China Sea, Cont. Shelf Res.. Vol. 88, pp. 216-227. 
  29. Lee, Y. J., J. K. Choi, and J. K. Shon(2012), Phytoplankton Distribution in the Eastern Part of the Yellow Sea by the Formation of Tidal Front and Upwelling during Summer, Ocean and Polar Research, Vol. 34, No. 2, pp. 111-123. 
  30. Lin, C., X. Ning, J. Su, Y. Lin, and B. Xu(2005), Environmental changes and the responses of the ecosystems of the Yellow Sea during 1976-2000, J. Mar. Syst., Vol. 55, pp. 223-234. 
  31. Litchman, E., C. A. Klausmeier, O. M. Schofield, and P. G. Falkowski(2007), The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosys tem level, Ecol. Lett., Vol. 10, pp. 1170-1181. 
  32. Longhurst, A.(2010), Ecological Geography of the Sea, Academic Press. London, UK. 
  33. Magazzu, G. and F. Decembrini(1995), Primary production, bio mass and abundance of phototrophic picoplankton in the Mediterranean Sea: a review, Aquat. Microb. Ecol., Vol. 9, pp. 97-104. 
  34. Maranon, E., P. M. Holligan, R. Barciela, N. Gonzalez, B. Mourino, M. J. Pazo, and M. Varela(2001), Patterns of phytoplankton size structure and productivity in contrasting open-ocean envi ronments. Mar. Ecol. Prog. Ser., 216, pp. 43-56. 
  35. Moran, X. A. G., I. Taupier-Letage, E. Vazquez-Dominguez, S. Ruiz, L. Arin, P. Raimbault, and M. Estrada(2001), Physical-biological coupling in the Algerian Basin (SW Mediterranean): Influence of mesoscale instabilities on the biomass and production of phytoplankton and bacterioplankton, Deep-Sea Res. Part I-Oceanogr. Res. Pap., Vol. 48, pp. 405-437. 
  36. Naimie, C. E., C. A. Blain, and D. R. Lynch(2001), Seasonal mean circulation in the Yellow Sea a model-generated climatology, Continental Shelf Research, Vol. 21, pp. 667-695. 
  37. National Institute of Fisheries Science(2023), Annual report for Climate change Trends in fisgeries, 2023, NIFS, Busan, Korea, 87pp. 
  38. Ning, X., F. Chai, H. Xue, Y. Cai, C. Liu, and J. Shi(2005), Physical-biological oceanographic coupling influencing phytoplankton and primary production in the South China Sea, J. Geophys. Res., Vol. 109, C10005. 
  39. Nitani, H.(1972), Beginning of the Kuroshio. In: Kuroshio, edited by Stommel, H. and K. Yoshida, University of Tokyo Press, Tokyo, pp. 353-369. 
  40. Noh, J. H., S. J. Yoo, J. A. Lee, H. C. Kim, and J. H. Lee(2005), Phytoplankton in the waters of the leodo ocean research station determined by microscopy, Flow cytometry, HPLC pigment data and remote sensing, Ocean Polar Res. Vol. 27, pp. 397-417. 
  41. Park, K. W.(2019), Phytoplankton community structure and distribution characteristics in the northern East China Sea, Ph.D. Thesis, Pukyong National University, Busan, 163pp. 
  42. Park, K. W., M. H. Yoo, H. J. Oh, S. H. Youn, K. Y. Kwon, and C. H. Moon(2019), Distribution characteristics and community structure of picophytoplankton in the northern East China Sea in 2016-2017, Korean J. Environ Biol. Vol. 37, No. 1, pp. 216-227. 
  43. Park, Y. H.(1986), Water characteristics and movements of the Yellow Sea Warm Current in summer, Prog. Oceanog. Vol. 17, pp. 243-254. 
  44. Parsons, T. R., Y. Maita, and C. M. A Lalli(1984), Manual of Biological and Chemical Methods for Seawater Analysis, Pergamon Press: Oxford, UK. 
  45. Raven, J. R.(1998) The twelfth tansley lecture. Small is beautiful: the picophytoplankton, Funct. Ecol., Vol. 12, pp. 503-513. 
  46. Revelante, N. and M. Gilmartin(1995), The relative increase of larger phytoplankton in a subsurface chlorophyll maximum of the northern Adriatic Sea. J. Plankton Res., Vol. 17, pp. 1535-1562. 
  47. Round, F. E., R. M. Crawford, and D. G. Mann(1990), The diatoms. In Biology and Morphology of the Genera, Cambridge University Press, Cambridge, UK, p. 747. 
  48. Shim, J. H.(1994), Illustrated encyclopedia of flora & fauna of Korea. In Marine Phytoplankton, Ministry of Education Republic of Korea, Seoul, Republic of Kore, Vol. 34, p. 487. 
  49. Shim, J. H., H. G. Yeo, and Y. K. Shin(1991), Ecological effect of thermal effluent in the Korean coastal waters I. Significance of autotrophic nano and picoplankton in adjacent waters of Kori nuclear power plant, J. Oceanol. Soc. Korea, Vol. 26, pp. 77-82. 
  50. Smayda, T. J.(1978), Biogeographical meaning indicators. In: Phytoplankton Manual (Sournia A, ed.). United Nations Educational, Scientific, and Cultural Organization. Paris. pp. 225-229. 
  51. Son, S. H., J. Campbell, M. Dowell, S. J. Yoo, and J. H. Noh(2005), Primaryproduction in the Yellow Sea determined by ocean color remote sensing, Mar Ecol-Prog Ser. Vol. 303, pp. 91-103. 
  52. Tomas, C. R.(1997), Identifying Marine Diatoms and Dinoflagellates, Academic Press, Inc., Cambridge, MA, USA, p. 874. 
  53. Tont, S. A.(1976), Short-period climatic fluctuations: effects on diatom biomass. Science, Vol. 194, pp. 942-944. 
  54. Vaulot, D. and X. Ning(1998), Abundance and cellular characteristics of marine Synechococcus spp. in the dilution zone of the ChangJiang(Yangtze River, China), Cont. Shelf Res. Vol. 8, pp. 1171-1186. 
  55. Venrick, E. L., J. A. McGowan, D. R. Cayan, and T. L. Hayward(1987), Climate and chlorophyll a: Long-term trends in the central north Pacific Ocean, Science. Vol. 238, pp. 70-72. 
  56. Wassmann, P., C. M. Duarte, S. Agusti, and M. K. Sejr(2011), Footprints of climate change in the Arctic marine ecosystem, Glob. Change Biol., Vol. 17, pp. 1235-1249. 
  57. Yoder, J. A. and M. A. Kennelly(2003), Seasonal and ENSO variability in global ocean phytoplankton Chl-a derived from 4 years of Sea WiFS measurements, Glob. Biogeochem. Cy., Vol. 17, 1112. 
  58. Yoon, Y. H.(2016), Spatio-temporal Fluctuation of phytoplankton size fractionation in the Uljin marine ranching area (UMRA), East Sea of Korea, Korean J. Environ. Biol., Vol. 34, pp. 151-160. 
  59. Zhou, M. J., Z. L. Shen, and R. C. Yu(2008), Responses of a coastal phytoplankton community to increased nutrient input from the Changjiang (Yangtze) River, Continental Shelf Research., Vol. 28, No. 2, pp. 1483-1489.