DOI QR코드

DOI QR Code

The Effect of Rhus verniciflua Stokes Extract on Apoptosis and Autophagy in human leukemic cell line (MOLT-4)

칠피(漆皮)가 급성림프구성백혈병 세포주 MOLT-4의 세포자멸과 자가포식에 미치는 영향

  • Juyoung Lee (Dept. of Internal Medicine, College of Korean Medicine, Kyung Hee University) ;
  • Jang-Hoon Lee (Dept. of Internal Medicine, College of Korean Medicine, Kyung Hee University) ;
  • Youngchul Kim (Dept. of Internal Medicine, College of Korean Medicine, Kyung Hee University)
  • 이주영 (경희대학교 한의과대학 간계내과학교실) ;
  • 이장훈 (경희대학교 한의과대학 간계내과학교실) ;
  • 김영철 (경희대학교 한의과대학 간계내과학교실)
  • Received : 2024.07.24
  • Accepted : 2024.08.19
  • Published : 2024.09.01

Abstract

Objectives: This study was performed to investigate the effects of Rhus verniciflua Stokes (RVS) on apoptosis and autophagy in the human leukemic cell line, MOLT-4. Methods: Cell viability was measured by MTS/PMS assay, and cell cycle distribution was analyzed by flow cytometry. The expression levels of mRNA implicated in apoptosis and ER-stress were investigated with RT-qPCR. Lastly, apoptosis- and autophagy-related protein expressions were measured by Western blot analysis. Results: RVS inhibited proliferation of MOLT-4 in a dose-dependent manner over 24, 48 and 72 hours. RVS treatment also induced an increase in subG1 phase. Exposure to RVS increased the expression of the mRNAs encoding Bax and caspase-3, while decreasing the expression of Bcl-2 mRNA, suggesting that RVS induced apoptosis in MOLT-4 cells. Additionally, RVS extract up-regulated ER-stress related mRNAs such as IRE1α, CHOP, PERK and ATF6. Changes in RVS extract-induced apoptosis and autophagy proteins on MOLT-4 cells were also investigated. The level of Bcl-2 was decreased, whereas the levels of Bax, caspase-3, AMPK, Beclin-1, Atg5, p62, and LC3II were increased. Conclusion: These results suggest that RVS would be beneficial in the treatment of Acute Lymphoblastic Leukemia.

Keywords

References

  1. Malard, F., & Mohty, M. (2020). Acute lymphoblastic leukaemia. Lancet, 395(10230), 1146-1162. https://doi.org/10.1016/S0140-6736(19)33018-1
  2. Howlader, N. N., Noone, A. M., Krapcho, M.E., Miller, D., Brest, A., Yu, M., et al. (2019). SEER cancer statistics review, 1975-2016. National Cancer Institute.
  3. National Cancer Center (South Korea). (2023). South Korea - Annual Report of Cancer Statistics in Korea in 2021. 
  4. Neaga, A., Jimbu, L., Mesaros, O., Bota, M., Lazar, D., Cainap, S., et al. (2021). Why Do Children with Acute Lymphoblastic Leukemia Fare Better Than Adults?. Cancers, 13(15), 3886. https://doi.org/10.3390/cancers13153886 
  5. Sas, V., Moisoiu, V., Teodorescu, P., Tranca, S., Pop, L., Iluta, S., et al. (2019). Approach to the Adult Acute Lymphoblastic Leukemia Patient. Journal of clinical medicine, 8(8), 1175. https://doi.org/10.3390/jcm8081175 
  6. Liu, Y., Easton, J., Shao, Y., Maciaszek, J., Wang, Z., Wilkinson, M. R., et al. (2017). The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nature genetics, 49(8), 1211-1218. https://doi.org/10.1038/ng.3909 
  7. Jeong, A., Lee, J., Chang, G., Lee, S., Lee, J., Baek, J., et al. (2020). Hanbangsoacheongsonyeonuihak (3rd edt). Seoul; Eui Sung Dang Publishing Co., 843-49. 
  8. Yun, K., Kim,Y., Lee, J. & Woo, H. (2006). Effect of Orostschys japonicus A. Berger on Apoptosis in K562 Cell Lines. J Int Korean Med, 27(1), 166-77. 
  9. Lee, K., Kim, A., Lim, K. & Yun, Y. (2017). Study of Signaling Pathway on Apoptotic Cell Death Induced by Extract of Ailanthus altissima in Human Jurkat Lymphocytes. Herbal Formula Science, 25(3), 349-62. https://doi.org/10. 14374/HFS.2017.25.3.349  https://doi.org/10.14374/HFS.2017.25.3.349
  10. Choi, H. S. (2019). MicroRNA Expression in Leukemia Cell Line(K562 cell) Using Rhus Verniciflua Stokes. Kor J Herbol, 34(6), 71-8. https://doi.org/10.6116/kjh.2019.34.6.71 
  11. Lee, K., Um, E., Jung, B., Choi, E., Kim, E., Lee, S., et al. (2018). Rhus verniciflua Stokes extract induces inhibition of cell growth and apoptosis in human chronic myelogenous leukemia K562 cells. Oncol Rep, 39(3), 1141-47. https://doi.org/10.3892/or.2018.6179 
  12. Yoon, S., Park, J., Kim, K., Jung, H. & Choi, W. (2006). The Study on the Safety and Case Series of the Acute Lymphocytic Leukemia using Rhus Verniciflua Stokes Extract (Nexia). J of Kor Oriental Oncology, 11(1), 1-21.
  13. Kim, T., Cha, J., Shin, W., Park, Y., Shin, S., Kim, G., et al. (2010). A case of Cerebral infarction with Chronic lymphocytic leukemia. J Int Korean Med, 278-84. 
  14. Joung, B. & Kim, Y. (2015). Study on Anti-Cancer Effects of Rhus Verniciflua Stokes Extracted with Sterile Distilled Water on Two Cholangiocarcinoma Cell Lines, SNU-1079 and SNU-119613. The Journal of Internal Korean Medicine, 36(1), 1-12. 
  15. Lee, S., Oh, P., Lim, K. & Lim, K. (2005). 36kDa Glycoprotein Isolated from Rhus verniciflua Stokes inhibits G/GO-Induced Mitochondrial Apoptotic Signal Pathways in BNL CL-2 Cells. Basic Clin Pharmacol Toxicol, 97(6), 399-405. https://doi.org/10.1111/j.1742-7843 
  16. Lee, J. C., Kim, J., & Jang, Y. S. (2003). Ethanol-eluted extract of Rhus verniciflua stokes inhibits cell growth and induces apoptosis in human lymphoma cells. Journal of biochemistry and molecular biology, 36(4), 337-343. https://doi.org/10.5483/bmbrep.2003.36.4.337 
  17. Cheon, S. H., Kim, K. S., Kim, S., Jung, H. S., Choi, W. C., & Eo, W. K. (2011). Efficacy and safety of Rhus verniciflua stokes extracts in patients with previously treated advanced non-small cell lung cancer. Forsch Komplementmed, 18(2), 77-83. https://doi.org/10.1159/000327306 
  18. Lee, S. H., Choi, W. C., & Yoon, S. W. (2009). Impact of standardized Rhus verniciflua stokes extract as complementary therapy on metastatic colorectal cancer: a Korean single-center experience. Integrative cancer therapies, 8(2), 148-152. https://doi.org/10.1177/1534735409336438 
  19. Lee, S., Kim, K., Jung, H., Lee, S., Cheon, S., Kim, S., et al. (2011). Efficacy and safety of standardized allergen-removed Rhus verniciflua Stokes extract in patients with advanced or metastatic pancreatic cancer: a Korean single-center experience. Oncology, 81(5-6), 312-318. https://doi.org/10.1159/000334695 
  20. Alvarnas, J. C., Brown, P. A., Aoun, P., Ballen, K. K., Barta, S. K., Borate, U., et al. (2015). Acute Lymphoblastic Leukemia, Version 2.2015. Journal of the National Comprehensive Cancer Network, 13(10), 1240-1279. https://doi.org/10.6004/jnccn.2015.0153 
  21. Paul, S., Kantarjian, H., & Jabbour, E. J. (2016). Adult Acute Lymphoblastic Leukemia. Mayo Clinic proceedings, 91(11), 1645-1666. https://doi.org/10.1016/j.mayocp.2016.09.010 
  22. Puckett Y, Chan O. Acute Lymphocytic Leukemia. [Updated 2023 Aug 26]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK459149/ 
  23. Park S. (2017). Acute lymphoblastic leukemia in Adults. The Korean Society of Hematology, 16-18. 
  24. Surveillance Research Program, National Cancer Institute: SEER*Explorer: An interactive website for SEER cancer statistics. Bethesda, MD: National Cancer Institute. Available online. Last accessed March 6, 2024. 
  25. Paul, S., Rausch, C. R., Nasnas, P. E., Kantarjian. H, & Jabbour, E. J. (2019). Treatment of relapsed/refractory acute lymphoblastic leukemia. Clin Adv Hematol Onco, 17(3), 166-75. 
  26. Lee, K. W., Um, E. S., Jung, B. B., Choi, E. S., Kim, E. Y., Lee, S., et al. (2018). Rhus verniciflua Stokes extract induces inhibition of cell growth and apoptosis in human chronic myelogenous leukemia K562 cells. Oncology reports, 39(3), 1141-1147. https://doi.org/10.3892/or.2018.6179 
  27. Lee, K. W., Chung, K. S., Seo, J. H., Yim, S. V., Park, H. J., Choi, J. H., et al. (2012). Sulfuretin from heartwood of Rhus verniciflua triggers apoptosis through activation of Fas, Caspase-8, and the mitochondrial death pathway in HL-60 human leukemia cells. Journal of cellular biochemistry, 113(9), 2835-2844. https://doi.org/10.1002/jcb.24158 
  28. Tompkins, K. D., & Thorburn, A. (2019). Regulation of Apoptosis by Autophagy to Enhance Cancer Therapy. The Yale journal of biology and medicine, 92(4), 707-718. 
  29. Huang, F. L., Yu, S. J., Li, C. L. (2021). Role of Autophagy and Apoptosis in Acute Lymphoblastic Leukemia. Cancer Control, 28, 10732748 211019138. https://doi.org/10.1177/107327482 11019138 
  30. Prokop, A., Wieder, T., Sturm, I., Essmann, F., Seeger, K., Wuchter, C., et al. (2000). Relapse in childhood acute lymphoblastic leukemia is associated with a decrease of the Bax/Bcl-2 ratio and loss of spontaneous caspase-3 processing in vivo. Leukemia, 14(9), 1606-1613. https://doi.org/10.1038/sj.leu.2401866 
  31. Rakesh, R., PriyaDharshini, L. C., Sakthivel, K. M., & Rasmi, R. R. (2022). Role and regulation of autophagy in cancer. Biochim Biophys Acta Mol Basis Dis, 1868(7), 166400. https://doi.org/10.1016/j.bbadis.2022.166400 
  32. Kang, S. C. (2010). Autophagy: Noble target mechanisms in natural medicines as anticancer agents. J Plant Biotechno, 37, 57-66. https://doi.org/10.5010/JPB.2010.37.1.057 
  33. Park, S. D., Lee, S. W., Chun, J. H., & Cha, S. H. (2000). Clinical features of 31 patients with systemic contact dermatitis due to the ingestion of Rhus (lacquer). The British journal of dermatology, 142(5), 937-942. https://doi.org/10.1046/j.1365-2133.2000.03474.x 
  34. Kim, J. H., Doh, E. J., Lee, G. S. (2020). Chemical change of urushiol during heating process of Toxicodendron vernicifluum resin. Kor J Herbol, 35(2), 1-6. http://dx.doi.org/10.6116/kjh.2020.35.2.1 
  35. Kim, D. Effects of roasted-Rhus verniciflua Stokes on cell apoptosis and tumor growth in Lewis lung carcinomabearing mice. 2012 [Master's dissertation, Kyung Hee University]. dCollection @ khu. https://khu.dcollection.net/public_resource/pdf/200000064430_20240701052914.pdf 
  36. Kim, S. H., Huh, C, K. (2020). Isolation and Identification of Fisetin: An Antioxidative Compound Obtained from Rhus verniciflua Seeds. Molecules, 27(14), 4510. https://doi.org/10.3390/molecules 27144510 
  37. Ola, M. S., Nawaz, M., Ahsan, H. (2011). Role of Bcl-2 family proteins and caspases in the regulation of apoptosis. Mol Cell Biochem, 351(1-2), 41-58. https://doi.org/10.1007/s11010-010-0709-x 
  38. Li, J., & Yuan, J. (2008). Caspases in apoptosis and beyond. Oncogene, 27(48), 6194-6206. https://doi.org/10.1038/onc.2008.297 
  39. Ellgaard, L., & Helenius, A. (2003). Quality control in the endoplasmic reticulum. Nature reviews. Molecular cell biology, 4(3), 181-191. https://doi.org/10.1038/nrm1052 
  40. Kapuy O. (2024). Mechanism of Decision Making between Autophagy and Apoptosis Induction upon Endoplasmic Reticulum Stress. Int J Mol Sci, 25(8), 4368. https://doi.org/10.3390/ijms25084368 
  41. Song CH. Endoplasmic Reticulum Stress Responses and Apoptosis. Journal of Bacteriology and Virology 2012;42(3):196-202. https://doi.org/10.4167/jbv.2012.42.3.196 
  42. Ong, G., Ragetli, R., Mnich, K., Doble, B. W., Kammouni, W., & Logue, S. E. (2024). IRE1 signaling increases PERK expression during chronic ER stress. Cell Death Dis, 15(4), 276. https://doi.org/10.1038/s41419-024-06663-0 
  43. Hu, H., Tian, M., Ding, C., & Yu, S. (2019). The C/EBP Homologous Protein (CHOP) Transcription Factor Functions in Endoplasmic Reticulum Stress-Induced Apoptosis and Microbial Infection. Front Immunol, 9, 3083. https://doi.org/10.3389/fimmu.2018.03083 
  44. Wang, S., Li, H., Yuan, M., Fan, H. & Cai, Z. (2022). Role of AMPK in autophagy. Front Physiol, 13, 1015500. https://doi.org/10.3389/fphys.2022.1015500 
  45. Zajac, A., Maciejczyk, A., Sumorek-Wiadro, J., Filipek, K., Derylo, K., Langner, E., et al. (2023). The Role of Bcl-2 and Beclin-1 Complex in "Switching" between Apoptosis and Autophagy in Human Glioma Cells upon LY294002 and Sorafenib Treatment. Cells, 12(23), 2670. https://doi.org/10.3390/cells12232670 
  46. Codogno, P., & Meijer, A. J. (2006). Atg5: more than an autophagy factor. Nature cell biology, 8(10), 1045-1047. https://doi.org/10.1038/ncb1006-1045 
  47. Ye, X., Zhou, X. J., & Zhang, H. (2018). Exploring the Role of Autophagy-Related Gene 5 (ATG5) Yields Important Insights Into Autophagy in Autoimmune/Autoinflammatory Diseases. Front Immunol, 9, 2334. https://doi.org/10.3389/fimmu.2018.02334