References
- Arumugam, D., Naik, D.L., Sajid, H.U. and Kiran, R. (2022), "Relationship between nano and macroscale properties of postfire ASTM A36 steels", J. Mater. Civ. Eng., 34(6), 04022100. https://doi.org/10.1061/(asce)mt.1943-5533.0004218.
- ASTM International (2015), ASTM E1876-15: Standard Test Method for Dynamic Young's Modulus, Shear Modulus, and Poisson's Ratio by Impulse Excitation of Vibration. West Conshohocken, PA: ASTM International.
- Balakrishnan, M., Leitao, C., Craveiro, D., Rodrigues, D.M., Santiago, A., da Silva, L.S. and Subramanian, C. (2022), "Post-fire tensile properties of S355 J2 structural steel welded connections for construction industrial applications", Metall. Res. Technol., 119, 511. https://doi.org/10.1051/metal/2022056.
- Dan, W.J., Gou, R.B., Yu, M., Ge, Y.B., & Li, T.J. (2022), "Experimental study on the post-fire mechanical behaviours of structural steels", J. Constr. Steel Res., 199, 107629. https://doi.org/10.1016/j.jcsr.2022.107629.
- Deutsches Institut fur Normung e.V. (DIN), DIN 50125:2009-07: Testing of metallic materials - Tensile Test Pieces. Berlin, Germany: Beuth Verlag.
- European Committee for Standardization (2004), EN 10025-2:2004: European Standard for Hot-Rolled Structural Steel. Part 2: Technical Delivery Conditions for Non-Alloy Structural Steels. Brussels: European Committee for Standardization.
- European Committee for Standardization (2005), EN 1993-1-2: Eurocode 3: Design of Steel Structures - Part 1-2: General Rules - Structural Fire Design, Brussels: European Committee for Standardization.
- Glassman, J.D., Gomez, A., Garlock, M.E.M. and Ricles, J. (2020), "Mechanical properties of weathering steels at elevated temperatures", J. Constr. Steel Res., 168, 105996. https://doi.org/10.1016/j.jcsr.2020.105996.
- Gunalan, S. and Mahendran, M. (2014), "Experimental investigation of post-fire mechanical properties of cold-formed steels", Thin-Wall. Struct., 85, 166-175. https://doi.org/10.1016/j.tws.2014.06.010.
- Institution BS. (2003), BS 5950-8. Structural Use of Steelwork in Building, Part 8: Code of Practice for Fire Resistant Design. London.
- Karina, C.N., Chun, P.J. and Okubo, K. (2017), "Tensile strength prediction of corroded steel plates by using machine learning approach", Steel Compos. Struct., 24(5), 635-641. https://doi.org/10.12989/scs.2017.24.5.635.
- Kiran, R. and Sajid, H.U. (2019), "Post-fire mechanical behavior of ASTM A572 steels subjected to high stress triaxialities", Eng. Struct., 190, 220-233. https://doi.org/10.1016/j.engstruct.2019.04.055.
- Lee, J., Engelhardt, M.D. and Taleff, E.M. (2012), "Mechanical properties of ASTM A992 steel after fire", Eng. J., 49(1), 33-44. https://doi.org/10.3744/SNAK.2012.49.1.33.
- Lu, J., Liu, H., Chen, Z. and Liao, X. (2016), "Experimental investigation into the post-fire mechanical properties of hot-rolled and cold-formed steels", J. Constr. Steel Res., 121, 291-310. https://doi.org/10.1016/j.jcsr.2016.03.005.
- Maraveas, C., Fasoulakis, Z. and Tsavdaridis, K.D. (2017), "Post-fire assessment and reinstatement of steel structures", J. Struct. Fire Eng., 8(2), 181-201. https://doi.org/10.1108/JSFE-03-2017-0028.
- Molkens, T., Cashell, K. and Rossi, B. (2020), "Material properties of structural, high strength and very high strength steels for post-fire assessment of existing structures", In Proceedings of the 11th International Conference on Structures in Fire, 51-762. University of Queensland. https://doi.org/10.14264/411eca7.
- Outinen, J. and Makelainen, P. (2002), "Mechanical properties of structural steel at elevated temperatures", In Advances in Steel Structures (ICASS'02), 1103-1110. https://doi.org/10.1016/B978-008044017-0/50129-3
- Outinen, J. and Makelainen, P. (2004), "Mechanical properties of structural steel at elevated temperatures and after cooling down", Fire Mater., 28(2-4), 237-251. https://doi.org/10.1002/fam.849.
- Ren, C., Dai, L., Huang, Y. and He, W. (2020), "Experimental investigation of post-fire mechanical properties of Q235 cold-formed steel", Thin-Wall. Struct., 150, 106651. https://doi.org/10.1016/j.tws.2020.106651.
- Sajid, H.U. and Kiran, R. (2018), "Influence of stress concentration and cooling methods on post-fire mechanical behavior of ASTM A36 steels", Constr. Build. Mater., 186, 920-945. https://doi.org/10.1016/j.conbuildmat.2018.08.006.
- Sajid, H.U., Naik, D.L. and Kiran, R. (2020), "Microstructure-mechanical property relationships for post-fire structural steels", J. Mater. Civ. Eng., 32(6), 04020133. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003190.
- Smith, C.I., Kirby, B.R., Lapwood, D.G., Cole, K.J., Cunningham, A.P. and Preston, R.R. (1981), "The reinstatement of fire damaged steel framed structures", Fire Saf. J., 4(1), 21-62. https://doi.org/10.1016/0379-7112(81)90004-7.
- Yan, M., Guo, Z., Li, C., Liu, Y. and Wang, X. (2021), "Effect of welding defects on mechanical properties of welded joints subjected to temperature", Steel Compos. Struct., 40(2), 193-202.
- Yang, N., Su, C., Wang, X.F. and Bai, F. (2016), "Mechanical properties of material in Q345GJ-C thick steel plates", Steel Compos. Struct., 21(3), 517-536.
- Yazici, C. (2024), "Mechanical properties of S235 steel protected with intumescent coatings under high temperatures: An experimental study", Buildings, 14(6). 2075-5309.
- Yin, H., Zhao, E., Zhang, X. and Yan, K. (2023), "Evaluating post-fire mechanical performance of S355J2W weathering steel with different artificial cooling approaches", Case Stud. Constr. Mater., 18(3), e02101. https://doi.org/10.1016/j.cscm.2023.e02101.
- Yu, Y., Lan, L., Ding, F. and Wang, L. (2019), "Mechanical properties of hot-rolled and cold-formed steels after exposure to elevated temperature: A review", Constr. Build. Mater., 213, 360-376. https://doi.org/10.1016/j.conbuildmat.2019.04.062.
- Zeybek, O ., Polat, V. and Ozkilic, Y.O. (2024), "The response of high strength S700 MC steel after fire exposure", J. Constr. Steel Res., 219, 108790. https://doi.org/10.1016/j.jcsr.2024.108790.
- Zhang, C., Jia, B. and Wang, J. (2020), "Influence of artificial cooling methods on post-fire mechanical properties of Q355 structural steel", Constr. Build. Mater., 252, 119092. https://doi.org/10.1016/j.conbuildmat.2020.119092.
- Zhao, Y., Guo, Q., Zhao, Z., Wu, X. and Xing, Y. (2023), "Prediction of tensile strength degradation of corroded steel based on in-situ pitting evolution", Steel Compos. Struct., 46(3), 385-401. https://doi.org/10.12989/scs.2023.46.3.385.