DOI QR코드

DOI QR Code

Time-dependent thermo-elastic creep analysis and life assessment of rotating thick cylindrical shells with variable thickness using TSDT

  • Received : 2023.05.11
  • Accepted : 2024.09.18
  • Published : 2024.10.25

Abstract

In the present study, the third-order shear deformation theory (TSDT) is presented to investigate time-dependent thermo-elastic creep behavior and life assessment of rotating thick cylindrical shells with variable thickness made of 304L austenitic stainless steel (304L SS). The cylindrical shells are subjected to non-uniform internal pressure, distributed temperature field, and a centrifugal body force due to rotating speed. Norton's law is used to describe the material creep constitutive model. A system of differential equations in terms of displacement and boundary conditions is derived by employing the minimum total potential energy principle based on TSDT. Then, the resulting equations are solved as semi-analytically using the multilayered method (MLM), which leads to an accurate solution. Subsequently, an iterative procedure is also proposed to investigate the stresses and deformations at different creep times. Larson-Miller Parameter (LMP) and Robinson's linear life fraction damage rule are employed to estimate the creep damages and the remaining life of cylindrical shells. In this research, the creep model uses Norton's law, LMP, and Robinson's approach which is the most accurate and reasonable model. To the best of the researcher's knowledge, in the previous studies, there is no study carried out on third-order shear deformation theory for thermo-elastic creep analysis and life assessment of thick cylinders with variable thickness. The results obtained from the multilayered approach are compared and validated with those determined from the finite element method (FEM) to confirm the accuracy of the suggested method based on TSDT and very good agreement is found. The results indicate that the present analysis is accurate and computationally efficient.

Keywords

References

  1. Abedi, M.M., Niknejad, A., Liaghat, G.H. and Nejad, M.Z. (2012), "Theoretical and experimental study on empty and foam-filled columns with square and rectangular cross section under axial compression", Int. J. Mech. Sci., 65(1), 134-146. https://doi.org/10.1016/j.ijmecsci.2012.09.011.
  2. Afshin, A., Nejad, M.Z. and Dastani, K. (2017), "Transient thermoelastic analysis of FGM rotating thick cylindrical pressure vessels under arbitrary boundary and initial conditions", J. Comput. Appl. Mech., 48(1), 15-26. https://doi.org/10.22059/jcamech.2017.233643.144.
  3. Ainsworth, R. and Budden, P. (1994), "Design and assessment of components subjected to creep", J. Strain. Anal. Eng. Des., 29(3), 201-207. https://doi.org/10.1243/03093247V293201.
  4. Alavi, N., Nejad, M.Z., Hadi, A. and Nikeghbalyan, A. (2024), "Exact thermoelastoplastic analysis of FGM rotating hollow disks in a linear elastic-fully plastic condition", Steel Compos. Struct., 51(4), 377-389. https://doi.org/10.12989/scs.2024.51.4.377.
  5. Arefi, M., Mohammadi, M., Tabatabaeian, A., Dimitri, R. and Tornabene, F. (2018), "Two-dimensional thermo-elastic analysis of FG-CNTRC cylindrical pressure vessels", Steel Compos. Struct., Int. J., 27(4), 525-536. https://doi.org/10.12989/scs.2018.27.4.525.
  6. Arefi, M., Nasr, M. and Loghman, A. (2018), "Creep analysis of the FG cylinders: time-dependent non-axisymmetric behavior", Steel Compos. Struct., 28(3), 331-347. doi:10.12989/scs.2018.28.3.331.
  7. Barati, A., Hadi, A., Nejad, M.Z. and Noroozi, R. (2022), "On vibration of bi-directional functionally graded nanobeams under magnetic field", Mech. Based Des. Struct. Mach., 50(2), 468-485. https://doi.org/10.1080/15397734.2020.1719507.
  8. Bose, T. and Rattan, M. (2017), "Modeling creep behavior of thermally graded rotating disc of functionally graded material", Differ. Equ. Dyn. Syst., 29, 285-298. https://doi.org/10.1007/s12591-017-0350-1.
  9. Bose, T. and Rattan, M. (2018), "Modeling creep analysis of thermally graded anisotropic rotating composite disc", Int. J. Appl. Mech., 10(06), 1850063. https://doi.org/10.1142/S1758825118500631.
  10. Dai, H.L., Jiang, H.J. and Yang, L. (2012), "Time-dependent behaviors of a FGPM hollow sphere under the coupling of multi-fields", Solid State Sci., 14(5), 587-597. https://doi.org/10.1016/j.solidstatesciences.2012.02.011.
  11. Davoudi Kashkoli, M. and Nejad, M.Z. (2014), "Effect of heat flux on creep stresses of thick-walled cylindrical pressure vessels", J. Appl. Res. Technol., 12(3). 585-597. https://doi.org/10.1016/S1665-6423(14)71637-2
  12. Deepak, D., Gupta, V. and Dham, A. (2010), "Creep modeling in functionally graded rotating disc of variable thickness", J. Mech. Sci. Technol., 24(11), 2221-2232. https://doi.org/10.1007/s12206-010-0817-2.
  13. Dehghan, M., Moosaie, A. and Nejad, M.Z. (2022), "An approximate thermo-mechanical solution of a functionally graded cylinder using hybrid integral transform and finite element method", J. Solid Mech., 14(1). 17-36. https://doi.org/10.22034/jsm.2021.1877579.1488.
  14. Dehghan, M., Moosaie, A. and Nejad, M.Z. (2023), "A mixed pseudo-spectral FFT-FE method for asymmetric nonlinear heat transfer of a functionally graded hollow cylinder", Sci. Iran., https://doi.org/10.24200/sci.2023.60237.6682.
  15. Dehghan, M., Nejad. M.Z. and Moosaie, A. (2016), "Thermo-electro-elastic analysis of functionally graded piezoelectric shells of revolution: Governing equations and solutions for some simple cases", Int. J. Eng. Sci., 104, 34-61. https://doi.org/10.1016/j.ijengsci.2016.04.007.
  16. Dehshahri, K., Nejad, M. Z. Ziaee, S., Niknejad, A. and Hadi, A. (2020), "Free vibrations analysis of arbitrary three-dimensionally FGM nanoplates", Adv. Nan. Res., 8(2), 115-134.
  17. Desu, R.K., Krishnamurthy, H.N., Balu, A., Gupta, A.K. and Singh, S.K. (2016), "Mechanical properties of Austenitic Stainless Steel 304L and 316L at elevated temperatures", J. Mater. Res. Technol., 5(1), 13-20. https://doi.org/10.1016/j.jmrt.2015.04.001.
  18. Eipakchi, H.R. (2010), "Third-order shear deformation theory for stress analysis of a thick conical shell under pressure", J. Mech. Mater. Struct., 5(1), 1-17. https://doi.org/10.2140/jomms.2010.5.1
  19. Farajpour, A., Ghayesh, M.H. and Farokhi, H. (2018), "A review on the mechanics of nanostructures", Int. J. Eng. Sci., 133, 231-263. https://doi.org/10.1016/j.ijengsci.2018.09.006.
  20. Fatehi, P. and Nejad, M.Z. (2014), "Effects of material gradients on onset of yield in FGM rotating thick cylindrical shells", Int, J. Appl. Mech., 6(04), 1450038. https://doi.org/10.1142/S1758825114500380.
  21. Foroutan, K. and Dai, L. (2022), "Post-buckling analysis of sandwich FG porous cylindrical shells with a viscoelastic core", Steel Compos. Struct., 45(3), 349-367. https://doi.org/10.12989/scs.2022.45.3.349.
  22. Ghannad, M. and Gharooni, H. (2015), "Elastic analysis of pressurized thick FGM cylinders with exponential variation of material properties using TSDT", Lat. Am. J. Solid Struct., 12(6), 1024-1041. https://doi.org/10.1590/1679-78251491.
  23. Ghannad, M., Jabbari, M. and Nejad, M.Z. (2015), "An elastic analysis for thick cylindrical pressure vessels with variable thickness", Eng. Solid Mech., 3(2), 117-130. https://doi.org/10.5267/j.esm.2015.1.003
  24. Ghannad, M. and Nejad, M.Z. (2010), "Elastic analysis of pressurized thick hollow cylindrical shells with clamped-clamped ends", Mech., 85(5), 11-18. http://dx.doi.org/10.5267/j.esm.2015.1.003.
  25. Ghannad, M. and Nejad, M.Z. (2012), "Elastic analysis of heterogeneous thick cylinders subjected to internal or external pressure using shear deformation theory", Acta Polytech. Hung., 9(6), 117-136. https://doi.org/10.12700/APH.9.6.2012.6.8
  26. Ghannad, M. and Nejad, M.Z. (2013), "Elastic solution of pressurized clamped-clamped thick cylindrical shells made of functionally graded materials", J. Theor. Appl. Mech., 51(4), 1067-1079.
  27. Ghannad, M., Nejad, M.Z. and Rahimi, G. (2009), "Elastic solution of axisymmetric thick truncated conical shells based on first-order shear deformation theory", Mech., 79(5), 13-20.
  28. Ghannad, M., Nejad, M.Z., Rahimi, G. and Sabouri, H. (2012), "Elastic analysis of pressurized thick truncated conical shells made of functionally graded materials", Struct. Eng. Mech., 43(1), 105-126. https://doi.org/10.12989/SEM.2012.43.1.105
  29. Ghannad, M., Rahimi, G.H. and Nejad, M.Z. (2012), "Determination of displacements and stresses in pressurized thick cylindrical shells with variable thickness using perturbation technique", Mech., 18(1), 14-21. https://doi.org/10.5755/j01.mech.18.1.1274.
  30. Ghannad, M., Rahimi, G.H. and Nejad, M.Z. (2013), "Elastic analysis of pressurized thick cylindrical shells with variable thickness made of functionally graded materials", Compos. Part B-Eng., 45(1), 388-396. https://doi.org/10.1016/j.compositesb.2012.09.043.
  31. Gharibi, M., Nejad, M.Z. and Hadi, A. (2017), "Elastic analysis of functionally graded rotating thick cylindrical pressure vessels with exponentially-varying properties using power series method of Frobenius", J. Comput. Appl. Mech., 48(1), 89-98. doi: 10.22059/jcamech.2017.233633.143.
  32. Gharooni, H. and Ghannad, M. (2019), "Nonlinear analysis of radially functionally graded hyperelastic cylindrical shells with axially-varying thickness and non-uniform pressure loads based on perturbation theory", J. Comput. Appl. Mech., 50(2), 324-340. https://doi.org/10.22059/jcamech.2019.282149.401.
  33. Gharooni, H., Ghannad, M. and Nejad, M.Z. (2016), "Thermo-elastic analysis of clamped-clamped thick FGM cylinders by using third-order shear deformation theory", Lat. Am. J. Solids Struct., 13(4), 750-774. https://doi.org/10.1590/1679-78252254.
  34. Ghorbanpour Arani, A., Kolahchi, R., Mosallaie Barzoki, A. and Loghman, A. (2011), "Time-dependent thermo-electromechanical creep behavior of radially polarized FGPM rotating cylinder", J. Solid Mech., 3(2), 142-157.
  35. Hadi, A., Nejad, M.Z. and Hosseini, M. (2018), "Vibrations of three-dimensionally graded nanobeams", Int. J. Eng. Sci., 128, 12-23. https://doi.org/10.1016/j.ijengsci.2018.03.004.
  36. Hadi, A., Nejad, M.Z., Rastgoo, A. and Hosseini, M. (2018), "Buckling analysis of FGM Euler-Bernoulli nano-beams with 3D-varying properties based on consistent couple-stress theory", Steel Compos. Struct., 26(6), 663-672.
  37. Hoseini, Z., Nejad, M.Z., Niknejad, A. and Ghannad, M. (2011, "New exact solution for creep behavior of rotating thick-walled cylinders", J. Basic Appl. Sci. Res. 1(10), 1704-1708.
  38. Jabbari, M., Nejad, M.Z. and Ghannad, M. (2015), "Thermo-elastic analysis of axially functionally graded rotating thick cylindrical pressure vessels with variable thickness under mechanical loading", Int. J. Eng. Sci., 96, 1-18. https://doi.org/10.1016/j.ijengsci.2015.07.005.
  39. Jabbari, M., Nejad, M.Z. and Ghannad, M. (2016), "Thermo-elastic analysis of axially functionally graded rotating thick truncated conical shells with varying thickness", Compos. Part B-Eng., 96, 20-34. https://doi.org/10.1016/j.compositesb.2016.04.026.
  40. Jabbari, M., Nejad, M.Z. and Ghannad, M. (2017), "Stress analysis of rotating thick truncated conical shells with variable thickness under mechanical and thermal loads", J. Solid Mech., 9(1), 100-114. https://dorl.net/dor/20.1001.1.20083505.2017.9.1.8.3. 1001.1.20083505.2017.9.1.8.3
  41. Jelwan, J., Chowdhry, M. and Pearce, G. (2011), "Creep life forecasting of weldment", J. Solid Mech., 3(1), 42-63.
  42. Joshan, Y.S., Grover, N. and Singh, B. (2018), "Assessment of non-polynomial shear deformation theories for thermomechanical analysis of laminated composite plates", Steel Compos. Struct., 27(6), 761-775. https://doi.org/10.12989/scs.2018.27.6.761.
  43. Kashkoli, M.D., Tahan, K.N. and Nejad, M.Z. (2017), "Time-dependent creep analysis for life assessment of cylindrical vessels using first order shear deformation theory", J. Mech., 33(4), 461. https://doi.org/10.1017/jmech.2017.6.
  44. Kashkoli, M.D. and Nejad, M.Z. (2015), "Time-dependent thermo-elastic creep analysis of thick-walled spherical pressure vessels made of functionally graded materials", J. Theor. Appl. Mech., 53(4). http://dx.doi.org/10.15632%2Fjtam-pl.53.4.1053. https://doi.org/10.15632%2Fjtam-pl.53.4.1053
  45. Kashkoli, M.D. and Nejad, M.Z. (2018), "Time-dependent creep analysis and life assessment of 304 L austenitic stainless steel thick pressurized truncated conical shells", Steel Compos. Struct., 28(3), 349-362. https://doi.org/10.12989/scs.2018.28.3.349.
  46. Kashkoli, M.D., Tahan, K.N. and Nejad, M.Z. (2017), "Time-dependent thermomechanical creep behavior of FGM thick hollow cylindrical shells under non-uniform internal pressure", Int. J. Appl. Mech., 9(06), 1750086. https://doi.org/10.1142/S1758825117500867.
  47. Kashkoli, M.D., Tahan, K.N. and Nejad, M.Z. (2018), "Thermomechanical creep analysis of FGM thick cylindrical pressure vessels with variable thickness", Int. J. Appl. Mech., 10(01), 1850008. https://doi.org/10.1142/S1758825118500084.
  48. Khayat, M., Dehghan, S.M., Najafgholipour, M.A. and Baghlani, A. (2018), "Free vibration analysis of functionally graded cylindrical shells with different shell theories using semi-analytical method", Steel Compos. Struct., Int. J., 28(6), 735-748. https://doi.org/10.12989/scs.2018.28.6.735.
  49. Kordkheili, S.H. and Livani, M. (2013), "Thermoelastic creep analysis of a functionally graded various thickness rotating disk with temperature-dependent material properties", Int. J. Press. Vessels Pip., 111, 63-74. https://doi.org/10.1016/j.ijpvp.2013.05.001.
  50. Kropiwnicki, J. and Hack, M. (2006), "Improved calculation of damage due creep by more accurate time to rupture data representation", 94-111.
  51. Loghman, A., Arani, A.G., Amir, S. and Vajedi, A. (2010), "Magnetothermoelastic creep analysis of functionally graded cylinders", Int. J. Press. Vessels Pip., 87(7), 389-395. https://doi.org/10.1016/j.ijpvp.2010.05.001.
  52. Loghman, A., Arani, A.G., Shajari, A. and Amir, S. (2011), "Time-dependent thermoelastic creep analysis of rotating disk made of Al-SiC composite", Arch. Appl. Mech., 81(12), 1853-1864. https://doi.org/10.1007/s00419-011-0522-3.
  53. Loghman, A., Faegh, R.K. and Arefi, M. (2018), "Two dimensional time-dependent creep analysis of a thick-walled FG cylinder based on first order shear deformation theory", Steel Compos. Struct., Int. J., 26(5), 533-547. https://doi.org/10.12989/scs.2018.26.5.533.
  54. Loghman, A. and Moradi, M. (2017), "Creep damage and life assessment of thick-walled spherical reactor using Larson-Miller parameter", Int. J. Press. Vessels Pip., 151, 11-19. https://doi.org/10.1016/j.ijpvp.2017.02.003.
  55. Loghman, A. and Shokouhi, N. (2009), "Creep damage evaluation of thick-walled spheres using a long-term creep constitutive model", J. Mech. Sci. Technol., 23(10), 2577. https://doi.org/10.1007/s12206-009-0631-x.
  56. Matsunaga, H. (2009), "Free vibration and stability of functionally graded circular cylindrical shells according to a 2D higher-order deformation theory", Compos. Struct., 88(4), 519-531. https://doi.org/10.1016/j.compstruct.2008.05.019.
  57. Mazarei, Z., Nejad, M.Z. and Hadi, A. (2016), "Thermo-elasto-plastic analysis of thick-walled spherical pressure vessels made of functionally graded materials", Int. J. Appl. Mech., 8(04), 1650054. https://doi.org/10.1142/S175882511650054X.
  58. Mohammadi Hooyeh, H. and Loghman, A. (2019), "Creep damage and remnant life prediction of rotating hollow shaft based on the design strain and theta projection concept", Mech. Adv. Mater. Struct., 26(11), 967-974. https://doi.org/10.1080/15376494.2018.1432785.
  59. Moon, H., Kim, K.M., Jeon, Y.H., Shin, S., Park, J.S. and Cho, H. H. (2015), "Effect of thermal stress on creep lifetime for a gas turbine combustion liner", Eng. Fail. Anal., 47, 34-40. https://doi.org/10.1016/j.engfailanal.2014.10.004.
  60. Moradi, M. and Loghman, A. (2018), "Non-axisymmetric time-dependent creep analysis in a thick-walled cylinder due to the thermo-mechanical loading", J. Solid Mech., 10(4), 845-863. https://dorl.net/dor/20.1001.1.20083505.2018.10.4.11.9. 1001.1.20083505.2018.10.4.11.9
  61. Nejad, M.Z., Hoseini, Z., Niknejad, A. and Ghannad, M. (2015), "Steady-state creep deformations and stresses in FGM rotating thick cylindrical pressure vessels", J. Mech., 31(1), 1-6. https://doi.org/10.1017/jmech.2014.70.
  62. Nejad, M.Z., Abedi, M., Lotfian, M. and Ghannad, M. (2016), "Exact and numerical elastic analysis for the FGM thick-walled cylindrical pressure vessels with exponentially-varying properties", Arch. Metall. Mater., 61. https://doi.org/10.1515/amm-2016-0267.
  63. Nejad, M.Z., Abedi, M., Lotfian, M. and Ghannad, M. (2012), "An exact solution for stresses and displacements of pressurized FGM thick-walled spherical shells with exponential-varying properties", J. Mech. Sci. Technol., 26, 4081-4087. https://doi.org/10.1007/s12206-012-0908-3
  64. Nejad, M.Z., Abedi, M., Lotfian, M.H. and Ghannad, M. (2013), "Elastic analysis of exponential FGM disks subjected to internal and external pressure", Cent. Eur. J. Eng., 3, 459-465.
  65. Nejad, M.Z., Alamzadeh, N. and Hadi, A. (2018), "Thermoelastoplastic analysis of FGM rotating thick cylindrical pressure vessels in linear elastic-fully plastic condition", Compos. B Eng., 154, 410-422. https://doi.org/10.1016/j.compositesb.2018.09.022.
  66. Nejad, M.Z. and Fatehi, P. (2015), "Exact elasto-plastic analysis of rotating thick-walled cylindrical pressure vessels made of functionally graded materials", Int. J. Eng. Sci., 86, 26-43. https://doi.org/10.1016/j.ijengsci.2014.10.002.
  67. Nejad, M.Z. and Hadi, A. (2016), "Non-local analysis of free vibration of bi-directional functionally graded Euler-Bernoulli nano-beams", Int. J. Eng. Sci., 105, 1-11. https://doi.org/10.1016/j.ijengsci.2016.04.011.
  68. Nejad, M.Z., Hadi, A. and Farajpour, A. (2017), "Consistent couple-stress theory for free vibration analysis of Euler-Bernoulli nano-beams made of arbitrary bi-directional functionally graded materials", Struct. Eng. Mech., 63(2), 161-169. https://doi.org/10.12989/SEM.2017.63.2.161
  69. Nejad, M.Z., Hadi, A., Omidvari, A. and Rastgoo, A. (2018), "Bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams using integral form of Eringen's non-local elasticity theory", Struct. Eng. Mech., 67(4), 417-425. https://doi.org/10.12989/SEM.2018.67.4.417
  70. Nejad, M.Z., Hadi, A. and Rastgoo, A. (2016), "Buckling analysis of arbitrary two-directional functionally graded Euler-Bernoulli nano-beams based on nonlocal elasticity theory", Int. J. Eng. Sci., 103, 1-10. https://doi.org/10.1016/j.ijengsci.2016.03.001.
  71. Nejad, M.Z., Jabbari, M. and Ghannad, M. (2014), "A semi-analytical solution of thick truncated cones using matched asymptotic method and disk form multilayers", Arch. Mech. Eng., 61(3), 495-513. http://dx.doi.org/10.2478%2Fmeceng-2014-0029. https://doi.org/10.2478%2Fmeceng-2014-0029
  72. Nejad, M.Z., Jabbari, M. and Ghannad, M. (2014), "A Semi-Analytical solution for elastic analysis of rotating thick cylindrical shells with variable thickness using disk form multilayers", Sci. World J., 1, 1-10. https://doi.org/10.1155/2014/932743.
  73. Nejad, M.Z., Jabbari, M. and Ghannad, M. (2015), "Elastic analysis of axially functionally graded rotating thick cylinder with variable thickness under non-uniform arbitrarily pressure loading", Int. J. Eng. Sci., 89, 86-99. https://doi.org/10.1016/j.ijengsci.2014.12.004.
  74. Nejad, M.Z., Jabbari, M. and Ghannad, M. (2015), "Elastic analysis of FGM rotating thick truncated conical shells with axially-varying properties under non-uniform pressure loading", Compos. Struct., 122, 561-569. https://doi.org/10.1016/j.compstruct.2014.12.028.
  75. Nejad, M.Z., Jabbari, M. and Ghannad, M. (2015), "Elastic analysis of rotating thick cylindrical pressure vessels under nonuniform pressure: linear and non-linear thickness", Period. Polytech. Mech. Eng., 59(2), 65-73. https://doi.org/10.3311/PPme.7153.
  76. Nejad, M.Z., Jabbari, M. and Ghannad, M. (2017), "A general disk form formulation for thermo-elastic analysis of functionally graded thick shells of revolution with arbitrary curvature and variable thickness", Acta Mech., 228(1), 215-231. https://doi.org/10.1007/s00707-016-1709-z.
  77. Nejad, M.Z. and Kashkoli, M.D. (2014), "Time-dependent thermo-creep analysis of rotating FGM thick-walled cylindrical pressure vessels under heat flux", Int. J. Eng. Sci., 82, 222-237. https://doi.org/10.1016/j.ijengsci.2014.06.006.
  78. Nejad, M.Z. and Rahimi, G. (2009), "Deformations and stresses in rotating FGM pressurized thick hollow cylinder under thermal load", Sci. Res. Essays., 4(3), 131-140.
  79. Nejad, M.Z., Rahimi, G. and Ghannad, M. (2009), "Set of field equations for thick shell of revolution made of functionally graded materials in curvilinear coordinate system", Mech., 77(3), 18-26.
  80. Nejad, M.Z. and Rahimi, G. (2010), "Elastic analysis of FGM rotating cylindrical pressure vessels", J. Chin. Inst. Eng., 33(4), 525-530. https://doi.org/10.1080/02533839.2010.9671640
  81. Nejad, M.Z., Rastgoo, A. and Hadi, A. (2014), "Effect of exponentially-varying properties on displacements and stresses in pressurized functionally graded thick spherical shells with using iterative technique", J. Solid Mech., 6(4), 366-377.
  82. Nejad, M.Z., Rastgoo, A. and Hadi, A. (2014), "Exact elasto-plastic analysis of rotating disks made of functionally graded materials", Int. J. Eng. Sci.,85, 47-57. https://doi.org/10.1016/j.ijengsci.2014.07.009.
  83. Nejad, M.Z., Taghizadeh, T., Mehrabadi, S.J. and Herasati, S. (2017), "Elastic analysis of carbon nanotube-reinforced composite plates with piezoelectric layers using shear deformation theory", Int. J. Appl. Mech., 9(01), 1750011. https://doi.org/10.1142/S1758825117500119.
  84. Niknejad, A., Abedi, M. Liaghat, G. and Nejad, M.Z. (2015), "Absorbed energy by foam-filled quadrangle tubes during the crushing process by considering the interaction effects", Arch. Civ. Mech. Eng., 15(2), 376-391. https://doi.org/10.1016/j.acme.2014.09.005
  85. Niknejad, A., Abedi, M. Liaghat, G. and Nejad, M.Z. (2012), "Prediction of the mean folding force during the axial compression in foam-filled grooved tubes by theoretical analysis", Mater. Des., 37, 144-151. https://doi.org/10.1016/j.matdes.2011.12.032.
  86. Rahimi, G. and Nejad, M.Z. (2008), "Exact solutions for thermal stresses in a rotating thick-walled cylinder of functionally graded materials", J. Appl. Sci., 8(18), 3267-3272. https://doi.org/10.3923/jas.2008.3267.3272
  87. Rahmani, M., Mohammadi, Y. and Kakavand, F. (2019), "Vibration analysis of sandwich truncated conical shells with porous FG face sheets in various thermal surroundings", Steel Compos. Struct., Int. J., 32(2), 239-252. https://doi.org/10.12989/scs.2019.32.2.239.
  88. Ramezani, F. and Nejad, M.Z. (2024), "Thermoelastic analysis of rotating FGM thick-walled cylindrical pressure vessels under bi-directional thermal loading using disk-form multilayer", Steel Compos. Struct., 51(2), 139-151. https://doi.org/10.12989/scs.2024.51.2.139.
  89. Ramezani, F., Nejad, M.Z. and Ghannad, M. (2023), "Thermoelastic analysis of pressurized rotating thick-walled cylindrical shells with variable thickness under bi-directional temperature fields", J. Comput. Appl. Mech., (Articles in Press).
  90. Ramezani, F., Nejad, M.Z. and Ghannad, M. (2023), "Thermoelastic analysis of rotating thick-walled cylindrical pressure vessels with linear variable thickness under bidirectional temperature", J. Comput. Appl. Mech., 54(4), 515-532. https://doi.org/10.22059/jcamech.2023.365220.876.
  91. Ramezani, F., Nejad, M. Z. and Ghannad, M. (2024), "Bidirectional thermo-elastic analysis of pressurized thick cylindrical shell with nonlinear variable thickness", J. Comput. Appl. Mech., 55(1), 125-143. https://doi.org/10.22059/jcamech.2023.367944.899.
  92. Robinson, E.L. (1952), "Effect of temperature variation on the long-time rupture strength of steels", Trans. ASME., 74(5). 777-780. https://doi.org/10.1115/1.4015916.
  93. Rostami, R., Mohamadimehr, M. and Rahaghi, M.I. (2019), "Dynamic stability and nonlinear vibration of rotating sandwich cylindrical shell with considering FG core integrated with sensor and actuator", Steel Compos. Struct., Int. J., 32(2), 225-237. https://doi.org/10.12989/scs.2019.32.2.225.
  94. Sabour, M. and Bhat, R. (2008), "Lifetime prediction in creep-fatigue environment", Mater. Sci.-Pol., 26(3), 563-584.
  95. Seddighi, H., Ghannad, M., Loghman, A. and Nejad, M.Z. (2024), "Creep analysis of a cylinder subjected to 2D thermoelasticity loads and boundary conditions with inner heat generation source", Forces Mech, 15, 100271. https://doi.org/10.1016/j.finmec.2024.100271.
  96. Seddighi, H., Ghannad, M., Loghman, A. and Nejad, M.Z. (2024), "Thermoelastic analysis of variable thickness truncated conical shell subjected to thermomechanical load with internal heat generation using perturbation technique", Mech. Based Des. Struct. Mach., 1-31. https://doi.org/10.1080/15397734.2024.2315162.
  97. She, G.L. (2020), "Wave propagation of FG polymer composite nanoplates reinforced with GNPs", Steel Compos. Struct., 37(1), 27-35.
  98. She, G.L., Yuan, F.G. and Ren, Y.R. (2017), "Research on nonlinear bending behaviors of FGM infinite cylindrical shallow shells resting on elastic foundations in thermal environments", Compos. Struct., 170, 111-121. https://doi.org/10.1016/j.compstruct.2017.03.010.
  99. She, G.L., Yuan, F.G. and Ren, Y.R. (2017), "Thermal buckling and post-buckling analysis of functionally graded beams based on a general higher-order shear deformation theory", Appl. Math. Model., 47, 340-357. https://doi.org/10.1016/j.apm.2017.03.014.
  100. Shokrollahi, H. (2018), "Deformation and stress analysis of a sandwich cylindrical shell using HDQ Method", Steel Compos. Struct., Int. J., 27(1), 35-48. https://doi.org/10.12989/scs.2018.27.1.035.
  101. Singh, T. and Gupta, V. (2012), "Steady-state creep analysis of a functionally graded thick cylinder subjected to internal pressure and thermal gradient", Int. J. Mater. Res., 103(8), 1042-1051. https://doi.org/10.3139/146.110738.
  102. Singh, T. and Gupta, V. (2014), "Analysis of steady state creep in whisker reinforced functionally graded thick cylinder subjected to internal pressure by considering residual stress", Mech. Adv. Mater. Struct., 21(5), 384-392. https://doi.org/10.1080/15376494.2012.697600.
  103. Sofiyev, A.H. (2018), "Application of the first order shear deformation theory to the solution of free vibration problem for laminated conical shells", Compos. Struct., 188, 340-346. https://doi.org/10.1016/j.compstruct.2018.01.016.
  104. Sofiyev, A.H., Hui, D., Haciyev, V., Erdem, H., Yuan, G., Schnack, E. and Guldal, V. (2017), "The nonlinear vibration of orthotropic functionally graded cylindrical shells surrounded by an elastic foundation within first order shear deformation theory", Compos. B. Eng., 116, 170-185. https://doi.org/10.1016/j.compositesb.2017.02.006.
  105. Sofiyev, A.H. and Kuruoglu, N. (2015), "Buckling of nonhomogeneous orthotropic conical shells subjected to combined load", Steel Compos. Struct., 19(1), 1-19. https://doi.org/10.12989/scs.2015.19.1.001
  106. Sofiyev, A.H. and Kuruoglu, N. (2022), "Buckling analysis of shear deformable composite conical shells reinforced by CNTs subjected to combined loading on the two-parameter elastic foundation", Def. Technol., 18(2), 205-218. https://doi.org/10.1016/j.dt.2020.12.007.
  107. Sofiyev, A.H., Fantuzzi, N., Ipek, C. and Tekin, G. (2022), "Buckling behavior of sandwich cylindrical shells covered by functionally graded coatings with clamped boundary conditions under hydrostatic pressure", Mater., 15(23), 8680. https://doi.org/10.3390/ma15238680.
  108. Sofiyev, A.H., Tornabene, F., Dimitri, R. and Kuruoglu, N. (2020), "Buckling behavior of FG-CNT reinforced composite conical shells subjected to a combined loading", Nanomater., 10(3),419. https://doi.org/10.3390/nano10030419.
  109. Sofiyev, A.H., Zerin, Z., Allahverdiev, B.P., Hui, D., Turan, F. and Erdem, H. (2017), "The dynamic instability of FG orthotropic conical shells within the SDT", Steel Compos. Struct., 25(5), 581-591.
  110. Taghizadeh, T., Nejad, M.Z. and Kashkoli, M.D. (2019), "Thermo-elastic creep analysis and life assessment of thick truncated conical shells with variable thickness", Int. J. Appl. Mech., 11(09), 1950086. https://doi.org/10.1142/S1758825119500868.
  111. Taghizadeh, T. and Nejad, M.Z. (2021), "Thermo-elastic creep analysis and life assessment of rotating thick pressurized cylindrical shells using third-order shear deformation theory", J. Comput. Appl. Mech., 52(3), 366-393. https://doi.org/10.22059/jcamech.2021.306967.546.
  112. Tahami, F.V., Daei-Sorkhabi, A.H. and Biglari, F.R. (2010), "Creep constitutive equations for cold-drawn 304L stainless steel", Mater. Sci. Eng. A., 527(18-19), 4993-4999. https://doi.org/10.1016/j.msea.2010.04.055.
  113. Thai, H.-T. and Kim, S.-E. (2015), "A review of theories for the modeling and analysis of functionally graded plates and shells", Compos. Struct., 128, 70-86. https://doi.org/10.1016/j.compstruct.2015.03.010.
  114. Yang, Y. (2000), "Time-dependent stress analysis in functionally graded materials." Int. J. Solids Struct., 37(51), 7593-7608. https://doi.org/10.1016/S0020-7683(99)00310-8.
  115. You, L., Ou, H. and Zheng, Z. (2007), "Creep deformations and stresses in thick-walled cylindrical vessels of functionally graded materials subjected to internal pressure", Compos. Struct., 78(2), 285-291. https://doi.org/10.1016/j.compstruct.2005.10.002.
  116. Nejad, M. Z., Jabbari, M. and Hadi, A. (2017), "A review of functionally graded thick cylindrical and conical shells", J. Comput. Appl. Mech., 48(2), 357-370. https://doi.org/10.22059/jcamech.2017.247963.220.
  117. Zharfi, H. and EkhteraeiToussi, H. (2018), "Time dependent creep analysis in thick FGM rotating disk with two-dimensional pattern of heterogeneity", Int. J. Mech. Sci., 140, 351-360. https://doi.org/10.1016/j.ijmecsci.2018.03.010.