DOI QR코드

DOI QR Code

Tests and finite element modeling of circular geopolymer compressive members with lateral FRP spiral wrapping

  • Ali Raza (Department of Civil Engineering, University of Engineering and Technology Taxila) ;
  • Nejib Ghazouani (Civil Engineering Department, College of Engineering, Northern Border University) ;
  • Mohamed Hechmi El Ouni (Department of Civil Engineering, College of Engineering, King Khalid University)
  • Received : 2023.04.08
  • Accepted : 2024.10.04
  • Published : 2024.10.25

Abstract

These days, cement production is increasing due to the growing world population, leading to expanded use of concrete in buildings. Yet, the production of cement significantly increases carbon emissions, putting the future of sustainable development at risk. Geopolymers are under research for their potential to reduce the impact on concrete buildings. In order to tackle this issue, the literature has yet to utilize experiments or numerical modeling to thoroughly investigate the mechanical behavior of columns made of hybrid fiber-reinforced geopolymer concrete (HFRGC) and reinforced with basalt fiber reinforced polymer (BFRP) bars. This research aims to investigate and assess the mechanical performance of steel-reinforced HFRGC columns (SRHC) and BFRP-reinforced HFRGC columns (GRHC) in concentric and eccentric loading conditions through experimental testing and finite element analysis (FEA). HFRGC specimens were prepared using steel and polypropylene fibers. Twelve circular columns, six GRHC, and six SRHC specimens, were constructed with a diameter of 300 mm and a height of 1200 mm. The average axial strength (AS) of GRHC columns was found to be 92.13% of that of SRHC columns, according to the study. Under eccentric stress circumstances, both kinds of specimens showed comparable losses in AS; for example, GRHC specimens with 38 mm spiral spacing showed reductions of 39.01% and 43.12%. Good performance was shown by the suggested analytical relationships that were drawn from the experimental data. The AS of GRHC columns may be predicted using the newly established analytical and FEA models, which are well supported by this comparative analysis that takes into account the wrapping impact of lateral BFRP spirals and the axial participation of primary BFRP bars.

Keywords

Acknowledgement

The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through a Large Research Project under grant number RGP 2/147/45. The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University, Arar, KSA for funding this research work through the project number "NBU-FFR-2024-2105-11".

References

  1. Afifi, M.Z., Mohamed, H.M. and Benmokrane, B. (2013), "Axial capacity of circular concrete columns reinforced with GFRP bars and spirals", J. Compos. Const., 18(1), 04013017. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000438.
  2. Afifi, M.Z., Mohamed, H.M. and Benmokrane, B. (2015), "Theoretical stress-strain model for circular concrete columns confined by GFRP spirals and hoops", Eng. Struct., 102, 202-213. https://doi.org/10.1016/j.engstruct.2015.08.020.
  3. Afshin, H., Shirazi, M.R.N. and Abedi, K. (2019), "Experimental and numerical study about seismic retrofitting of corrosion-damaged reinforced concrete columns of bridge using combination of FRP wrapping and steel profiles", Steel Compos. Struct., 30(3), 231-251. https://doi.org/10.12989/scs.2019.30.3.231.
  4. Ahmad, A., Khan, Q.U.Z. and Raza, A. (2020), "Reliability analysis of strength models for CFRP-confined concrete cylinders", Compos. Struct., 244, 112312. https://doi.org/10.1016/j.compstruct.2020.112312.
  5. Alfarah, B., Lopez-Almansa, F. and Oller, S. (2017), "New methodology for calculating damage variables evolution in Plastic Damage Model for RC structures", Eng. Struct., 132, 70-86. https://doi.org/10.1016/j.engstruct.2016.11.022.
  6. Ali, L., El Ouni, M.H., Raza, A. and Kahla, N.B. (2021), "Investigation of FRP-reinforced recycled concrete compressive members, Experimental and theoretical analysis", Steel Compos. Struct., 41(1), 99-113. https://doi.org/10.12989/scs.2021.41.1.099.
  7. Aslam, H.M.U., Sami, A. and Raza, A. (2021), "Axial compressive execution of damaged steel and GFRP bars reinforced concrete columns retrofitted with CFRP laminates", Compos. Struct., 258, 113206. https://doi.org/10.1016/j.compstruct.2020.113206.
  8. ASTM C143/C143M-15 Standard Test Method for Slump of Hydraulic-Cement Concrete. West Conshohocken; Pennsylvania, USA.
  9. Baili, J., Raza, A., Azab, M., Ali, K., El Ouni, M.H., Haider, H. and Farooq, M.A. (2022), "Experiments and predictive modeling of optimized fiber-reinforced concrete columns having FRP rebars and hoops", Mech. Adv. Mater. Struc., 30(1-20). https://doi.org/10.1080/15376494.2022.2108527.
  10. Barros, J.A.O. and Figueiras, J.A. (2001), "Model for the analysis of steel fibre reinforced concrete slabs on grade", Comput. Struc., 79(1), 97-106. https://doi.org/10.1016/S0045-7949(00)00061-4.
  11. Barros, J. and Figueiras, J.A. (1999), "Flexural execution of SFRC, testing and modelling", J. Mater. Civil Eng., 11(4), 331-339. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:4(331).
  12. Barth, K. and Wu, H. (2006), "Efficient nonlinear finite element modeling of slab on steel stringer bridges", Finite Elem. Anal. Des., 42(14-15), 1304-1313. https://doi.org/10.1016/j.finel.2006.06.004.
  13. Benmokrane, B., El-Salakawy, E., El-Ragaby, A. and Lackey, T. (2006), "Designing and testing of concrete bridge decks reinforced with glass FRP bars", J. Bridge Eng., 11(2), 217-229. https://doi.org/10.1061/(ASCE)1084-0702(2006)11:2(217).
  14. Berradia, M. and Kassoul, A. (2018), "AS and strain models proposed for CFRP confined concrete cylinders", Steel Compos. Struct. Int. J., 29(4), 465-481. https://doi.org/10.12989/scs.2018.29.4.465.
  15. Boscato, G. and Ientile, S. (2018), "Experimental and numerical investigation on dynamic properties of thin-walled GFRP buckled columns", Compos. Struc., 189, 273-285. https://doi.org/10.1016/j.compstruct.2018.01.061.
  16. CSA S806-12 (2012), Design and Construction of Building Structures with Fibre-Reinforced Polymers, Canadian Standards Association.
  17. Chi, Y., Xu, L. and Yu, H.S. (2014), "Constitutive modeling of steel-polypropylene hybrid fiber reinforced concrete using a non-associated plasticity and its numerical implementation", Compos. Struct., 111, 497-509. https://doi.org/10.1016/j.compstruct.2014.01.025.
  18. Chi, Y., Xu, L. and Yu, H.S. (2014), "Plasticity model for hybrid fiber-reinforced concrete under true triaxial compression", J. Eng. Mech., 140(2), 393-405. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000659.
  19. Chi, Y., Yu, M., Huang, L. and Xu, L. (2017), "Finite element modeling of steel-polypropylene hybrid fiber reinforced concrete using modified concrete damaged plasticity", Eng. Struct., 148, 23-35. https://doi.org/10.1016/j.engstruct.2017.06.039.
  20. Choo, C.C., Harik, I.E. and Gesund, H. (2006), "Strength of rectangular concrete columns reinforced with fiber-reinforced polymer bars", ACI Mech. J., 103(3), 452. https://doi.org/10.14359/15324.
  21. De Luca, A., Matta, F. and Nanni, A. (2010), "Execution of full-scale glass fiber-reinforced polymer reinforced concrete columns under axial load", ACI Mech. J., 107(5), 589. https://doi.org/10.14359/51663912.
  22. Dong, H.L., Wang, D., Wang, Z. and Sun, Y. (2018), "Axial compressive execution of square concrete columns reinforced with innovative closed-type winding GFRP stirrups", Compos. Struct., 192, 115-125. https://doi.org/10.1016/j.compstruct.2018.02.092.
  23. El Ouni, M.H., Raza, A., Elhadi, K.M., Azab, M. and Arshad, M. (2022), "Parametric investigation of GFRP-RCC jute fibre-reinforced recycled aggregate concrete specimens", Struct., 45, 1043-1061. https://doi.org/10.1016/j.istruc.2022.09.068.
  24. Elchalakani, M., Dong, M., Karrech, A., Li, G., Mohamed Ali, M. S. and Yang, B. (2019), "Experimental investigation of rectangular air-cured geopolymer concrete columns reinforced with GFRP bars and stirrups", J. Compos. Construct., 23(3), 04019011. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000938.
  25. Elchalakani, M., Dong, M., Karrech, A., Li, G., Mohamed Ali, M. and Yang, B. (2019), "Testing and modelling of geopolymer columns with fibreglass reinforcement", Proceedings of the Institution of Civil Engineers-Structures and Buildings, 1-41. https://doi.org/10.1680/jstbu.18.00173.
  26. Elchalakani, M., Dong, M., Karrech, A., Mohamed A., Mohamed S. and Huo, JS. (2020), "Circular concrete columns and beams reinforced with GFRP bars and spirals under axial, eccentric, and flexural loading", J. Compos. Construc., 24(3), 04020008. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001008.
  27. Elchalakani, M., Karrech, A., Dong, M., Ali, M.M. and Yang, B. (2018), "Experiments and finite element analysis of GFRP reinforced geopolymer concrete rectangular columns subjected to concentric and eccentric axial loading", Struct., 14, 273-289. https://doi.org/10.1016/j.istruc.2018.04.001.
  28. Elchalakani, M. and Ma, G. (2017), "Tests of glass fibre reinforced polymer rectangular concrete columns subjected to concentric and eccentric axial loading", Eng. Struct., 151, 93-104. https://doi.org/10.1016/j.engstruct.2017.08.023.
  29. Elchalakani, M., Ma, G., Aslani, F. and Duan, W. (2017), "Design of GFRP-reinforced rectangular concrete columns under eccentric axial loading", Mag. Concrete Res., 69(17), 865-877. https://doi.org/10.1680/jmacr.16.00437.
  30. Elshamandy, M.G., Farghaly, A.S. and Benmokrane, B. (2018), "Experimental execution of glass fiber-reinforced polymer-reinforced concrete columns under lateral cyclic load", ACI Struct. J, 115(2), 337-349.
  31. Genikomsou, A.S. and Polak, M.A. (2015), "Finite element analysis of punching shear of concrete slabs using damaged plasticity model in ABAQUS", Eng. Struct., 98, 38-48. https://doi.org/10.1016/j.engstruct.2015.04.016.
  32. Gholampour, A. and Ozbakkaloglu, T. (2018), "Execution of steel fiber-reinforced concrete-filled FRP tube columns, Testing outcomes and a finite element model", Compos. Struct., 194, 252-262. https://doi.org/10.1016/j.compstruct.2018.03.094.
  33. Guerin, M., Mohamed, H.M., Benmokrane, B., Nanni, A. and Shield, C.K. (2018), "Eccentric execution of full-scale reinforced concrete columns with glass fiber-reinforced polymer bars and ties", ACI Mech. J., 115(2). https://doi.org/10.14359/51701107.
  34. Berradia, M., Meziane, E.H., Raza, A., Ahmed, M., Khan, Q.U.Z. and Shabbir, F. (2024), "Prediction of ultimate strain and strength of CFRP-wrapped normal and high-strength concrete compressive members using ANN approach", Mech. Adv. Mater. Struct., 31(23), 5737-5759. https://doi.org/10.1080/15376494.2023.2219441.
  35. Hadhood, A., Mohamed, H.M. and Benmokrane, B. (2016), "Axial load-moment interaction diagram of circular concrete columns reinforced with CFRP bars and spirals, Experimental and theoretical investigations", J, Compos. Construct., 21(2), 04016092. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000748.
  36. Hadhood, A., Mohamed, H.M. and Benmokrane, B. (2016), "Experimental study of circular high-strength concrete columns reinforced with GFRP bars and spirals under concentric and eccentric loading", J. Compos. Construct., 21(2), 04016078. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000734.
  37. Hadi, M.N., Karim, H. and Sheikh, M.N. (2016), "Experimental investigations on circular concrete columns reinforced with GFRP bars and spirals under different loading conditions", J. Compos. Construct., 20(4), 04016009. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000670.
  38. Hadi, M., Karim, H. and Sheikh, MN. (2016), "Experimental investigations on circular concrete columns reinforced with GFRP bars and spirals under different loading conditions", J. Compos. Construct., 20(4), 04016009. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000670.
  39. Hales, T.A., Pantelides, C.P. and Reaveley, L.D. (2017), "Analytical buckling model for slender FRP-reinforced concrete columns", Compos. Struct., 176, 33-42. https://doi.org/10.1016/j.compstruct.2017.05.034.
  40. Hany, N.F., Hantouche, E.G. and Harajli, M.H. (2016), "Finite element modeling of FRP-confined concrete using modified concrete damaged plasticity", Eng. Struct., 125, 1-14. https://doi.org/10.1016/j.engstruct.2016.06.047.
  41. Hu, L., Ghafoori, E., Pons, S., Feng, P., Yang, J. and Azim, I. (2021), "Fire execution and design of steel columns reinforced by prestressed CFRP strips", Compos. Struct., 275, 114516. https://doi.org/10.1016/j.compstruct.2021.114516.
  42. Huang, Z. and Liew, J.Y.R. (2015), "Nonlinear finite element modelling and parametric study of curved steel-concrete-steel double skin composite panels infilled with ultra-lightweight cement composite", Construct. Build. Mater., 95, 922-938. https://doi.org/10.1016/j.conbuildmat.2015.07.134.
  43. Ibrahim, A.M.A., Fahmy, M.F.M. and Wu, Z. (2016), "3D finite element modeling of bond-controlled execution of steel and basalt FRP-reinforced concrete square bridge columns under lateral loading", Compos. Struct., 143, 33-52. https://doi.org/10.1016/j.compstruct.2016.01.014.
  44. ACI 4401R 06 (2006), Guide for the Design and Construction of Mechanical Concrete Reinforced with FRP Bars, Institute Concrete Institute.
  45. Jiang, T. and Teng, J.G. (2007), "Analysis-oriented stress-strain models for FRP-confined concrete", Eng. Struct., 29(11), 2968-2986. https://doi.org/10.1016/j.engstruct.2007.01.010.
  46. Kachlakev, D.I., Miller, T.H., Potisuk, T., Yim, S.C. and Chansawat, K. (2001), "Finite element modeling of reinforced concrete structures strengthened with FRP laminates", Department of Transportation Research Group.
  47. Karim, H., Sheikh, M.N. and Hadi, M.N.S. (2016), "Axial load-axial deformation behaviour of circular concrete columns reinforced with GFRP bars and spirals", Construct. Build. Mater., 112, 1147-1157. https://doi.org/10.1016/j.conbuildmat.2016.02.219.
  48. Khan, Q.S., Sheikh, M.N. and Hadi, M.N.S. (2016), "Axial-flexural interactions of GFRP-CFFT columns with and without reinforcing GFRP bars", J. Compos. Construct., 21(3), 04016109. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000771.
  49. Liang, J., Zhang, G., Wang, J. and Hu, M. (2019), "Mechanical behaviour of partially encased composite columns confined by CFRP under axial compression", Steel Compos. Struct., 31(2), 125-131. https://doi.org/10.12989/scs.2019.31.2.125.
  50. Lim, J.C., Karakus, M. and Ozbakkaloglu, T. (2016), "Evaluation of ultimate conditions of FRP-confined concrete columns using genetic programming", Comput. Struct., 162, 28-37. https://doi.org/10.1016/j.compstruc.2015.09.005.
  51. Liu, J., Xu, T., Guo, Y., Wang, X. and Chen, Y.F. (2019), "Execution of circular CFRP-steel composite tubed high-strength concrete columns under axial compression", Compos. Struct., 211, 596-609. https://doi.org/10.1016/j.compstruct.2019.01.011.
  52. Lok, T.S. and Xiao, J.R. (1999), "Flexural strength assessment of steel fiber-reinforced concrete", J. Mater. Civil Eng., 11(3), 188-196. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:3(188).
  53. Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989), "A plastic-damage model for concrete", Int. J. Solids Struct., 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4.
  54. Luo, Z., Sinaei, H., Ibrahim, Z., Shariati, M., Jumaat, Z., Wakil, K. and Khorami, M. (2019), "Computational and experimental analysis of beam to column joints reinforced with CFRP plates", Steel Compos. Struct., 30(3), 271-280. https://doi.org/10.12989/scs.2019.30.3.271.
  55. Mander, J.B., Priestley, M. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Mech. Eng., 114(8), 1804-1826. ttps://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804).
  56. Mohamed, H.M., Afifi, M.Z. and Benmokrane, B. (2014), "Performance evaluation of concrete columns reinforced longitudinally with FRP bars and confined with FRP hoops and spirals under axial load", J. Bridge Eng., 19(7), 04014020. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000590.
  57. Mohamed, H., Afifi, M.Z. and Benmokrane, B. (2014), "Performance evaluation of concrete columns reinforced longitudinally with FRP bars and confined with FRP hoops and spirals under axial load", J. Bridge Eng., 19(7), 04014020. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000590.
  58. Mohammed, H.J. and Zain, M.F.M. (2017), "Simulation assessment and the-oretical verification of a new design for portable concrete barriers", KSCE J. Civil Eng., 21(3), 851-862. https://doi.org/10.1007/s12205-016-0603-5.
  59. Nematzadeh, M., Hasan-Nattaj, F., Gholampour, A., Sabetifar, H. and Ngo, T.D. (2021), "Strengthening of heat-damaged steel fiber-reinforced concrete using CFRP composites, Experimental study and analytical modeling", Struct., 32, 1856-1870. https://doi.org/10.1016/j.istruc.2021.03.084.
  60. Ozcan, D., Bayraktar, A., Sahin, A., Haktanir, T. and Turker, T. (2009), "Experimental and finite element analysis on the steel fiber-reinforced concrete (SFRC) beams ultimate execution", Construct. Build. Mater., 23, 1064-1077. https://doi.org/10.1016/j.conbuildmat.2008.05.010.
  61. Pantelides, C.P., Gibbons, M.E. and Reaveley, L.D. (2013), "Axial load execution of concrete columns confined with GFRP spirals", J. Compos. Construct., 17(3), 305-313. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000357.
  62. Paultre, P., Eid, R., Langlois, Y. and Levesque, Y. (2010), "Execution of steel fiber-reinforced high-strength concrete columns under uniaxial compression", J. Mech. Eng., 136(10), 1225-1235. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000211.
  63. Raza, A. and Khan, Q.U.Z. (2021), "Mechanical execution of GFRP-reinforced circular HFRC columns under concentric and eccentric loading", Arab. J. Sci, Eng., 46(5), 4239-4252. https://doi.org/10.1007/s13369-020-04881-0.
  64. Raza, A. and Khan, Q.U.Z. (2022), "Efficiency of GFRP reinforcement in concrete columns having hybrid fibres, experiments and finite element analysis", Mag. Concrete Res., 74(21), 1103-1119. https://doi.org/10.1680/jmacr.20.00274.
  65. Raza, A. and Rafique, U. (2020), "Efficiency of GFRP bars and hoops in recycled aggregate concrete columns, Experimental and numerical study", Compos. Struct., 255, 112986. https://doi.org/10.1016/j.compstruct.2020.112986.
  66. Raza, A., Manalo, A.C., Rafique, U. and AlAjarmeh, O. S. (2021), "Concentrically loaded recycled aggregate geopolymer concrete columns reinforced with GFRP bars and spirals", Compos. Struct., 268, 113968. https://doi.org/10.1016/j.compstruct.2021.113968.
  67. Raza, A., El Ouni, M.H. and Berradia, M. (2021), "Structural assessment of eccentrically loaded GFRP reinforced circular concrete columns: Experiments and finite element analysis", Compos. Struct., 275, 114528. https://doi.org/10.1016/j.compstruct.2021.114528.
  68. Raza, A. and Khan, Q.U.Z. (2020), "Experimental and numerical execution of hybrid fiber reinforced concrete compression members under concentric loading", SN Appl. Sci., 2. https://doi.org/10.1007/s42452-020-2461-5.
  69. Raza, A., Khan, Q.U.Z. and Ahmad, A. (2019), "Numerical investigation of load-carrying capacity of GFRP-reinforced rectangular columns using CDP model in ABAQUS", Adv. Civil Eng., 2019, https://doi.org/10.1155/2019/1745341.
  70. Raza, A., El Ouni, M.H. and Berradia, M. (2021), "assessment of eccentrically loaded GFRP reinforced circular concrete columns: Experiments and finite element analysis", Compos. Struct., 275, 114528. https://doi.org/10.1016/j.compstruct.2021.114528.
  71. Raza, A., El Ouni, M.H., Ali, L., Awais, M., Ali, B., Ahmad, Z. and Kahla, N.B. (2022), "Mechanical evaluation of recycled aggregate concrete circular columns having FRP rebars and synthetic fibers", Eng. Struct., 250, 113392. https://doi.org/10.1016/j.engstruct.2021.113392.
  72. Raza, A. and Ahmad, A. (2021), "Investigation of HFRC columns reinforced with GFRP bars and spirals under concentric and eccentric loadings", Eng. Struct., 227, 111461. https://doi.org/10.1016/j.engstruct.2020.11146.
  73. Raza, A., Shah, S.A.R., Khan, A.R., Aslam, M.A., Khan, T.A., Arshad, K., Hussan, S., Sultan, A., Shahzadi, G. and Waseem, M. (2020), "Sustainable FRP-confined symmetric concrete structures: an application experimental and numerical validation process for reference data", Appl. Sci., 10(1), 333. https://doi.org/10.3390/app10010333.
  74. Ren, F.M., Liang, Y.W., Chen, G.M., Xie, P., Xiong, M.X. and Wu, D. (2022), "FRP-confined steel-reinforced RAC short columns under eccentric compression, A parametric study and a new design calculation model", Compos. Struct., 291, 115597. https://doi.org/10.1016/j.compstruct.2022.115597.
  75. Samani, A.K. and Attard, M.M. (2012), "A stress-strain model for uniaxial and confined concrete under compression", Eng. Structures, 41, 335-349. https://doi.org/10.1016/j.engstruct.2012.03.027.
  76. Setvati, M.R. and Mustaffa, Z. (2018), "Rehabilitation of notched circular hollow sectional steel beam using CFRP patch", Steel Compos. Struct., 26(2), 151-161. https://doi.org/10.12989/scs.2018.26.2.151.
  77. Shahabi, R. and Narmashiri, K. (2018), "Effects of deficiency location on CFRP strengthening of steel CHS short columns". Steel Compos. Struct., 28(3), 267-278. https://doi.org/10.12989/scs.2018.28.3.267.
  78. Shayanfar, J. and Bengar H.A. (2018), "A practical model for simulating nonlinear behaviour of FRP strengthened RC beam-column joints", Steel Compos. Struct., 27(1), 49-74. https://doi.org/10.12989/scs.2018.27.1.049.
  79. Shi, Y., Swait, T. and Soutis, C. (2012), "Modelling damage evolution in composite laminates subjected to low velocity impact", Compos. Struct., 94(9), 2902-2913. https://doi.org/10.1016/j.compstruct.2012.03.039.
  80. Sun, L., Wei, M. and Zhang, N. (2017), "Experimental study on the execution of GFRP reinforced concrete columns under eccentric axial load", Construct. Build. Mater., 152, 214-225. https://doi.org/10.1016/j.conbuildmat.2017.06.159.
  81. Teng, J.G., Jiang, T., Lam, L. and Luo, Y.Z. (2009), "Refinement of a design-oriented stress-strain model for FRP-confined concrete", J. Compos. Construct., 13(4), 269. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000012.
  82. Tobbi, H., Farghaly A.S. and Benmokrane, B. (2012), "Concrete columns reinforced longitudinally and transversally with glass fiber-reinforced polymer bars", ACI Mech. J., 109(4). https://doi.org/10.14359/51683874.
  83. Tobbi, H., Farghaly, A.S. and Benmokrane, B. (2014), "Execution of concentrically loaded fiber-reinforced polymer reinforced concrete columns with varying reinforcement types and Ratios", ACI Mech. J., 111(2). http://dx.doi.org/10.14359/51686528.
  84. Triantafyllou, G., Rousakis, T.C. and Karabinis, A.I. (2017), "Corroded RC beams patch repaired and strengthened in flexure with fiber-reinforced polymer laminates", Compos. Part B Eng., 112, 125-136. https://doi.org/10.1016/j.compositesb.2016.12.032.
  85. Turvey, G. and Zhang Y. (2006), "A computational and experimental analysis of the buckling, postbuckling and initial failure of pultruded GRP columns", Comput. Struct., 84(22-23), 1527-1537. https://doi.org/10.1016/j.compstruc.2006.01.028.
  86. Wang, J. and Chen, Y. (2006), ABAQUS Application in Civil Engineering, Zhejiang University Press, China.
  87. Wei, Y., Bai, J., Zhang, Y., Miao, K. and Zheng, K. (2021), "Compressive performance of high-strength seawater and sea sand concrete-filled circular FRP-steel composite tube columns", Eng. Struct., 240, 112357. https://doi.org/10.1016/j.engstruct.2021.112357.
  88. Wu, J., Li, J. and Faria, R. (2006), "An energy release rate-based plastic-damage model for concrete", Int. J. Solid. Struct., 43(3-4), 583-612. https://doi.org/10.1016/j.ijsolstr.2005.05.038.
  89. Xie, Q. (2019), "An experimental study on the effect of CFRP on execution of reinforce concrete beam column connections", Steel Compos. Struct., 30(5), 433-441. https://doi.org/10.12989/scs.2019.30.5.433.
  90. Xu, T., Liu, J., Wang, X., Guo, Y. and Chen, Y.F. (2020), "Behaviour of short CFRP-steel composite tubed reinforced normal and high strength concrete columns under eccentric compression", Eng. Struct., 205, 110096. https://doi.org/10.1016/j.engstruct.2019.110096.
  91. Zadeh, H.J. and Nanni, A. (2012), "Design of RC columns using glass FRP reinforcement", J. Compos. Construct., 17(3), 294-304. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000354.
  92. Zeng, J., Ye, Y., Yu, T. and Teng, J. (2019), "Axial compression tests on steel-free concrete columns reinforced longitudinally with hybrid bars", Third International Workshop on Seawater Sea-sand Concrete (SSC) Structures Reinforced with FRP Composites, December.
  93. Zhang, B., Yu, T. and Teng, J. (2021), "Execution and modelling of FRP-concrete-steel hybrid double-skin tubular columns under repeated unloading/reloading cycles", Compos. Struct., 258, 113393. https://doi.org/10.1016/j.compstruct.2020.113393.
  94. Zhang, X. and Deng, Z. (2018), "Experimental study and theoretical analysis on axial compressive execution of concrete columns reinforced with GFRP bars and PVA fibers", Construct. Build. Mater., 172, 519-532. https://doi.org/10.1016/j.conbuildmat.2018.03.237.
  95. Zhang, Y., Wei, Y., Bai, J., Wu, G. and Dong, Z. (2020), "A novel seawater and sea sand concrete filled FRP-carbon steel composite tube column, Concept and behaviour", Compos. Struct., 246, 112421. https://doi.org/10.1016/j.compstruct.2020.112421.