DOI QR코드

DOI QR Code

Practical applications of computational fluid dynamics to wind design of high-rise buildings

  • Min Kyu Kim (Department of Architecture and Architectural Engineering, Seoul National University) ;
  • Soonpil Kang (Department of Applied Mathematics, Naval Postgraduate School, 1 University Circle) ;
  • Thomas H.-K. Kang (Department of Architecture and Architectural Engineering, Seoul National University)
  • Received : 2024.02.23
  • Accepted : 2024.09.08
  • Published : 2024.10.25

Abstract

An accurate assessment of aerodynamic effects on structures is essential for a reliable wind design for high-rise buildings. Turbulence model is a key ingredient of computational fluid dynamics (CFD) in calculating the wind flow fields. This paper aims to identify the properties of representative RANS and LES models particularly for wind load determination. The models investigated are the realizable k-ε model for RANS and the dynamic Smagorinsky model for LES. In this study, their application aspects are discussed to provide enhanced reproducibility and reliability. The airflow around a building at Reynolds number 76,000 is simulated and the numerical results are also compared with wind tunnel experiment data. The wind design loads, such as story shear forces and overturning or torsional moments, are calculated based on the numerical results. Both RANS and LES models accurately capture surface pressure profiles, while LES results demonstrate proper energy decay in the power spectra. The numerical results highlight the effects of aspect ratio of building and the attack angle on the wind loads. This information would be of great help in designing tall buildings resilient to wind environments using CFD models.

Keywords

Acknowledgement

This work was supported by National Research Foundation of Korea (Grant No. NRF-2021R1A5A10). This support is gratefully acknowledged.

References

  1. Abdelaziz, K.M., Alipour, A. and Hobeck, J.D. (2021), "A smart facade system controller for optimized wind-induced vibration mitigation in tall buildings", J. Wind Eng. Industrial Aerod., 212, 104601. https://doi.org/10.1016/j.jweia.2021.104601.
  2. Ai, Z. and Mak, C.M. (2015), "Large-eddy simulation of flow and dispersion around an isolated building: Analysis of influencing factors", Comput. Fluid., 118, 89-100. https://doi.org/10.1016/j.compfluid.2015.06.006.
  3. Alinejad, H., Jeong, S.Y. and Kang, T.H.K. (2020), "Comparative assessment of ASCE 7-16 and KBC 2016 for determination of design wind loads for tall buildings", Wind Struct., 31(6), 575-591. https://doi.org/10.12989/was.2020.31.6.575.
  4. Alinejad, H., Jeong, S.Y. and Kang, T.H.K. (2020), "Performance-based design of tall buildings for wind load and application of response modification factor", Wind Struct. 31(2), 153-164.
  5. Alinejad, H., Jeong, S.Y., Chang, C. and Kang, T.H. (2022), "Upper limit of aerodynamic forces for inelastic wind design", J. Struct. Eng., 148(2), 04021271. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003260.
  6. Alinejad, H., Kang, T.H. and Jeong, S.Y. (2021), "Performance-based wind design framework proposal for tall buildings", Wind Struct., 32(4), 283-292. https://doi.org/10.12989/was.2021.32.4.283.
  7. Alinejad, H., Kang, T.H.K. and Jeong, S.Y. (2020), "Engineering review of ASCE 7-16 wind-load provisions and wind effect on tall concrete-frame buildings", J. Struct. Eng., 146(6), 04020100. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002622.
  8. ANSYS (2016), Ansys Fluent - CFD Software.
  9. Architectural Institute of Japan (2015), AIJ Recommendations for Loads on Buildings, Architectural Institute of Japan, Shiba, Minato-ku, Tokyo, Japan.
  10. Blocken, B. (2018), "LES over RANS in building simulation for outdoor and indoor applications: A foregone conclusion?", Build. Simul., 11, 821-870. https://doi.org/10.1007/s12273-018-0459-3.
  11. Ding, F. and Kareem, A. (2018), "A multi-fidelity shape optimization via surrogate modeling for civil structures", J. Wind Eng. Ind. Aerod., 178, 49-56. https://doi.org/10.1016/j.jweia.2018.04.022.
  12. Dong, S., Karniadakis, G.E. and Chryssostomidis, C. (2014), "A robust and accurate outflow boundary condition for incompressible flow simulations on severely-truncated unbounded domains", J. Comput. Phys., 261, 83-105.
  13. Elshaer, A., Bitsuamlak, G. and El Damatty, A. (2017), "Enhancing wind performance of tall buildings using corner aerodynamic optimization", Eng. Struct., 136, 133-148. https://doi.org/10.1016/j.engstruct.2017.01.019.
  14. Elshaer, A., Gairola, A., Adamek, K. and Bitsuamlak, G. (2017), "Variations in wind load on tall buildings due to urban development", Sustain. Cities Soc., 34, 264-277. https://doi.org/10.1016/j.scs.2017.06.008.
  15. Franke, J., Hirsch, C., Jensen, A., Krus, H., Schatzmann, M., Westbury, P., Miles, S., Wisse, J. and Wright, N. (2004), "Recommendations on the use of CFD in predicting pedestrian wind environment", Cost Action, 14.
  16. Germano, M., Piomelli, U., Moin, P. and Cabot, W.H. (1991), "A dynamic subgrid-scale eddy viscosity model", Phys. Fluids A: Fluid Dyn., 3(7), 1760-1765. https://doi.org/10.1063/1.857955. http://wind.arch.t-kougei.ac.jp/system/eng/contents/code/tpu.
  17. Huang, S., Li, Q.S. and Xu, S. (2007), "Numerical evaluation of wind effects on a tall steel building by CFD", J. Constr. Steel Res., 63(5), 612-627. https://doi.org/10.1016/j.jcsr.2006.06.033.
  18. Jeong, J. and Hussain, F. (1995), "On the identification of a vortex", J. Fluid Mech., 285, 69-94. https://doi.org/10.1017/S0022112095000462.
  19. Jeong, S.Y., Alinejad, H. and Kang, T.H.K. (2021), "Performance-based wind design of high-rise buildings using generated time-history wind loads", J. Struct. Eng., 147(9), 04021134.
  20. Kang, S. and Masud, A. (2022), "Variational multiscale immersed boundary method for incompressible turbulent flows", J. Comput. Phys., 469, 111523. https://doi.org/10.1016/j.jcp.2022.111523.
  21. KDS 41 (2022), Ministry of Land, Infrastructure and Transport (Korea), Sejong-si, Republic of Korea.
  22. Lee, D.S.H. and Mauree, D. (2021), "RANS based CFD simulations for urban wind prediction - Field verification against Motus", Wind Struct., 33(1), 29. https://doi.org/10.12989/was.2021.33.1.029.
  23. Lilly, D.K. (1992), "A proposed modification of the Germano subgrid-scale closure method", Phys. Fluids A: Fluid Dyn., 4(3), 633-635. https://doi.org/10.1063/1.858280.
  24. Lin, Q., Ishida, Y., Tanaka, H., Mochida, A., Yang, Q. and Tamura, Y. (2023), "Large eddy simulations of strong wind mechanisms at pedestrian level around square-section buildings with same aspect ratios and different sizes", Build. Environ., 243, 110680. https://doi.org/10.1016/j.buildenv.2023.110680.
  25. Mochida, A., Tominaga, Y., Murakami, S., Yoshie, R., Ishihara, T. and Ooka, R. (2002), "Comparison of various k-ε models and DSM applied to flow around a high-rise building-report on AIJ cooperative project for CFD prediction of wind environment", Wind Struct., 5(2, 3, 4), 227-244. https://doi.org/10.12989/was.2002.5.2_3_4.227.
  26. Okaze, T., Kikumoto, H., Ono, H., Imano, M., Ikegaya, N., Hasama, T., Nakao, K., Kishida, T., Tabata, Y. and Nakajima, K. (2021), "Large-eddy simulation of flow around an isolated building: A step-by-step analysis of influencing factors on turbulent statistics", Build. Environ., 202, 108021. https://doi.org/10.1016/j.buildenv.2021.108021.
  27. Pomaranzi, G., Pasqualotto, G. and Zassso, A. (2022), "Investigation of the effects due to a permeable double skin facade on the overall aerodynamics of a high-rise building", Wind Struct., 35(3), 213. https://doi.org/10.12989/was.2022.35.3.213.
  28. Ricci, M., Patruno, L., Kalkman, I., De Miranda, S. and Blocken, B. (2018), "Towards LES as a design tool: Wind loads assessment on a high-rise building", J. Wind Eng. Ind. Aerod., 180, 1-18. https://doi.org/10.1016/j.jweia.2018.07.009.
  29. Richards, P. and Hoxey, R. (1993), "Appropriate boundary conditions for computational wind engineering models using the k-ε turbulence model", J. Wind Eng. Ind. Aerod., 46, 145-153.
  30. Salim, S.M., Buccolieri, R., Chan, A. and Di Sabatino, S. (2011), "Numerical simulation of atmospheric pollutant dispersion in an urban street canyon: Comparison between RANS and LES", J. Wind Eng. Ind. Aerod., 99(2-3), 103-113. https://doi.org/10.1016/j.jweia.2010.12.002.
  31. Shih, T.H., Liou, W.W., Shabbir, A., Yang, Z. and Zhu, J. (1995), "A new k-epsilon eddy viscosity model for high Reynolds number turbulent flows: Model development and validation", Comput. Fluid., 24(3), 227-238. https://doi.org/10.1016/0045-7930(94)00032-T.
  32. Smirnov, A., Shi, S. and Celik, I. (2001), "Random flow generation technique for large eddy simulations and particle-dynamics modeling", J. Fluid. Eng., 123(2), 359-371. https://doi.org/10.1115/1.1369598.
  33. Toja-Silva, F., Kono, T., Peralta, C., Lopez-Garcia, O. and Chen, J. (2018), "A review of computational fluid dynamics (CFD) simulations of the wind flow around buildings for urban wind energy exploitation", J. Wind Eng. Ind. Aerod., 180, 66-87. https://doi.org/10.1016/j.jweia.2018.07.010.
  34. Tominaga, Y. and Stathopoulos, T. (2011), "CFD modeling of pollution dispersion in a street canyon: Comparison between LES and RANS", J. Wind Eng. Ind. Aerod., 99(4), 340-348. https://doi.org/10.1016/j.jweia.2010.12.005.
  35. Tominaga, Y., Mochida, A., Murakami, S. and Sawaki, S. (2008), "Comparison of various revised k-ε models and LES applied to flow around a high-rise building model with 1:1:2 shape placed within the surface boundary layer", J. Wind Eng. Ind. Aerod., 96(4), 389-411. https://doi.org/10.1016/j.jweia.2008.01.004.
  36. Tominaga, Y., Mochida, A., Shirasawa, T., Yoshie, R., Kataoka, H., Harimoto, K. and Nozu, T. (2004), "Cross comparisons of CFD results of wind environment at pedestrian level around a high-rise building and within a building complex", J. Asian Archi. Build. Eng., 3(1), 63-70. https://doi.org/10.3130/jaabe.3.63.
  37. Tominaga, Y., Mochida, A., Yoshie, R., Kataoka, H., Nozu, T., Yoshikawa, M. and Shirasawa, T. (2008), "AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings", J. Wind Eng. Ind. Aerod., 96(10-11), 1749-1761. https://doi.org/10.1016/j.jweia.2008.02.058.
  38. van Hooff, T., Blocken, B. and Tominaga, Y. (2017), "On the accuracy of CFD simulations of cross-ventilation flows for a generic isolated building: Comparison of RANS, LES and experiments", Build. Environ., 114, 148-165. https://doi.org/10.1016/j.buildenv.2016.12.019.
  39. Vinuesa, R., Schlatter, P., Malm, J., Mavriplis, C. and Henningson, D.S. (2015), "Direct numerical simulation of the flow around a wall-mounted square cylinder under various inflow conditions", J. Turbul., 16(6), 555-587. https://doi.org/10.1080/14685248.2014.989232.
  40. Wang, Y. and Chen, X. (2022), "Evaluation of wind loads on high-rise buildings at various angles of attack by wall-modeled large-eddy simulation", J. Wind Eng. Ind. Aerod., 229, 105160. https://doi.org/10.1016/j.jweia.2022.105160.
  41. Wind Engineering Information Center in Tokyo Polytechnic University (2017), Wind Pressure Database for High-Rise Building, Japan.
  42. Wu, Y.T. and Porte-Agel, F. (2012), "Atmospheric turbulence effects on wind-turbine wakes: An LES study", Energie., 5(12), 5340-5362. https://doi.org/10.3390/en5125340.
  43. Xu, M., Patruno, L., Lo, Y.L., De Miranda, S. and Ubertini, F. (2022), "Simulation of porous claddings using LES and URANS: A 5:1 rectangular cylinder", Wind Struct., 35(1), 67-81. https://doi.org/10.12989/was.2022.35.1.067.
  44. Yan, B.W. and Li, Q.S. (2015), "Inflow turbulence generation methods with large eddy simulation for wind effects on tall buildings", Comput. Fluid., 116, 158-175. https://doi.org/10.1016/j.compfluid.2015.04.020.
  45. Yang, Y., Gu, M., Chen, S. and Jin, X. (2009), "New inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer in computational wind engineering", J. Wind Eng. Ind. Aerod., 97(2), 88-95. https://doi.org/10.1016/j.jweia.2008.12.001.
  46. Yoshie, R., Mochida, A., Tominaga, Y., Kataoka, H., Harimoto, K., Nozu, T. and Shirasawa, T. (2007), "Cooperative project for CFD prediction of pedestrian wind environment in the Architectural Institute of Japan", J. Wind Eng. Ind. Aerod., 95(9-11), 1551-1578. https://doi.org/10.1016/j.jweia.2007.02.023.
  47. Zhang, X. (2009), CFD Simulation of Neutral ABL Flows, Riso DTU-National Laboratory for Sustainable Energy, Denmark.
  48. Zhang, Y., Cao, S. and Cao, J. (2022), "An improved consistent inflow turbulence generator for LES evaluation of wind effects on buildings", Build. Environ., 223, 109459. https://doi.org/10.1016/j.buildenv.2022.109459.
  49. Zhang, Y., Cao, S. and Cao, J. (2023), "Implementation of an embedded LES model with parameter assessment for predicting surface pressure and surrounding flow of an isolated building", Build. Environ., 243, 110633. https://doi.org/10.1016/j.buildenv.2023.110633.
  50. Zhang, Z., Ji, C., Alam, M.M. and Xu, D. (2020), "DNS of vortex-induced vibrations of a yawed flexible cylinder near a plane boundary", Wind Struct., 30(5), 465. https://doi.org/10.12989/was.2020.30.5.465.
  51. Zheng, X., Montazeri, H. and Blocken, B. (2020), "CFD simulations of wind flow and mean surface pressure for buildings with balconies: Comparison of RANS and LES", Build. Environ., 173, 106747. https://doi.org/10.1016/j.buildenv.2020.106747.
  52. Ziarani, N.N., Cook, M.J., Freidooni, F. and O'Sullivan, P.D. (2023), "The role of near-facade flow in wind-dominant single-sided natural ventilation for an isolated three-storey building: An LES study", Build. Environ., 235, 110210. https://doi.org/10.1016/j.buildenv.2023.110210.