Acknowledgement
This work was supported by National Research Foundation of Korea (Grant No. NRF-2021R1A5A10). This support is gratefully acknowledged.
References
- Abdelaziz, K.M., Alipour, A. and Hobeck, J.D. (2021), "A smart facade system controller for optimized wind-induced vibration mitigation in tall buildings", J. Wind Eng. Industrial Aerod., 212, 104601. https://doi.org/10.1016/j.jweia.2021.104601.
- Ai, Z. and Mak, C.M. (2015), "Large-eddy simulation of flow and dispersion around an isolated building: Analysis of influencing factors", Comput. Fluid., 118, 89-100. https://doi.org/10.1016/j.compfluid.2015.06.006.
- Alinejad, H., Jeong, S.Y. and Kang, T.H.K. (2020), "Comparative assessment of ASCE 7-16 and KBC 2016 for determination of design wind loads for tall buildings", Wind Struct., 31(6), 575-591. https://doi.org/10.12989/was.2020.31.6.575.
- Alinejad, H., Jeong, S.Y. and Kang, T.H.K. (2020), "Performance-based design of tall buildings for wind load and application of response modification factor", Wind Struct. 31(2), 153-164.
- Alinejad, H., Jeong, S.Y., Chang, C. and Kang, T.H. (2022), "Upper limit of aerodynamic forces for inelastic wind design", J. Struct. Eng., 148(2), 04021271. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003260.
- Alinejad, H., Kang, T.H. and Jeong, S.Y. (2021), "Performance-based wind design framework proposal for tall buildings", Wind Struct., 32(4), 283-292. https://doi.org/10.12989/was.2021.32.4.283.
- Alinejad, H., Kang, T.H.K. and Jeong, S.Y. (2020), "Engineering review of ASCE 7-16 wind-load provisions and wind effect on tall concrete-frame buildings", J. Struct. Eng., 146(6), 04020100. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002622.
- ANSYS (2016), Ansys Fluent - CFD Software.
- Architectural Institute of Japan (2015), AIJ Recommendations for Loads on Buildings, Architectural Institute of Japan, Shiba, Minato-ku, Tokyo, Japan.
- Blocken, B. (2018), "LES over RANS in building simulation for outdoor and indoor applications: A foregone conclusion?", Build. Simul., 11, 821-870. https://doi.org/10.1007/s12273-018-0459-3.
- Ding, F. and Kareem, A. (2018), "A multi-fidelity shape optimization via surrogate modeling for civil structures", J. Wind Eng. Ind. Aerod., 178, 49-56. https://doi.org/10.1016/j.jweia.2018.04.022.
- Dong, S., Karniadakis, G.E. and Chryssostomidis, C. (2014), "A robust and accurate outflow boundary condition for incompressible flow simulations on severely-truncated unbounded domains", J. Comput. Phys., 261, 83-105.
- Elshaer, A., Bitsuamlak, G. and El Damatty, A. (2017), "Enhancing wind performance of tall buildings using corner aerodynamic optimization", Eng. Struct., 136, 133-148. https://doi.org/10.1016/j.engstruct.2017.01.019.
- Elshaer, A., Gairola, A., Adamek, K. and Bitsuamlak, G. (2017), "Variations in wind load on tall buildings due to urban development", Sustain. Cities Soc., 34, 264-277. https://doi.org/10.1016/j.scs.2017.06.008.
- Franke, J., Hirsch, C., Jensen, A., Krus, H., Schatzmann, M., Westbury, P., Miles, S., Wisse, J. and Wright, N. (2004), "Recommendations on the use of CFD in predicting pedestrian wind environment", Cost Action, 14.
- Germano, M., Piomelli, U., Moin, P. and Cabot, W.H. (1991), "A dynamic subgrid-scale eddy viscosity model", Phys. Fluids A: Fluid Dyn., 3(7), 1760-1765. https://doi.org/10.1063/1.857955. http://wind.arch.t-kougei.ac.jp/system/eng/contents/code/tpu.
- Huang, S., Li, Q.S. and Xu, S. (2007), "Numerical evaluation of wind effects on a tall steel building by CFD", J. Constr. Steel Res., 63(5), 612-627. https://doi.org/10.1016/j.jcsr.2006.06.033.
- Jeong, J. and Hussain, F. (1995), "On the identification of a vortex", J. Fluid Mech., 285, 69-94. https://doi.org/10.1017/S0022112095000462.
- Jeong, S.Y., Alinejad, H. and Kang, T.H.K. (2021), "Performance-based wind design of high-rise buildings using generated time-history wind loads", J. Struct. Eng., 147(9), 04021134.
- Kang, S. and Masud, A. (2022), "Variational multiscale immersed boundary method for incompressible turbulent flows", J. Comput. Phys., 469, 111523. https://doi.org/10.1016/j.jcp.2022.111523.
- KDS 41 (2022), Ministry of Land, Infrastructure and Transport (Korea), Sejong-si, Republic of Korea.
- Lee, D.S.H. and Mauree, D. (2021), "RANS based CFD simulations for urban wind prediction - Field verification against Motus", Wind Struct., 33(1), 29. https://doi.org/10.12989/was.2021.33.1.029.
- Lilly, D.K. (1992), "A proposed modification of the Germano subgrid-scale closure method", Phys. Fluids A: Fluid Dyn., 4(3), 633-635. https://doi.org/10.1063/1.858280.
- Lin, Q., Ishida, Y., Tanaka, H., Mochida, A., Yang, Q. and Tamura, Y. (2023), "Large eddy simulations of strong wind mechanisms at pedestrian level around square-section buildings with same aspect ratios and different sizes", Build. Environ., 243, 110680. https://doi.org/10.1016/j.buildenv.2023.110680.
- Mochida, A., Tominaga, Y., Murakami, S., Yoshie, R., Ishihara, T. and Ooka, R. (2002), "Comparison of various k-ε models and DSM applied to flow around a high-rise building-report on AIJ cooperative project for CFD prediction of wind environment", Wind Struct., 5(2, 3, 4), 227-244. https://doi.org/10.12989/was.2002.5.2_3_4.227.
- Okaze, T., Kikumoto, H., Ono, H., Imano, M., Ikegaya, N., Hasama, T., Nakao, K., Kishida, T., Tabata, Y. and Nakajima, K. (2021), "Large-eddy simulation of flow around an isolated building: A step-by-step analysis of influencing factors on turbulent statistics", Build. Environ., 202, 108021. https://doi.org/10.1016/j.buildenv.2021.108021.
- Pomaranzi, G., Pasqualotto, G. and Zassso, A. (2022), "Investigation of the effects due to a permeable double skin facade on the overall aerodynamics of a high-rise building", Wind Struct., 35(3), 213. https://doi.org/10.12989/was.2022.35.3.213.
- Ricci, M., Patruno, L., Kalkman, I., De Miranda, S. and Blocken, B. (2018), "Towards LES as a design tool: Wind loads assessment on a high-rise building", J. Wind Eng. Ind. Aerod., 180, 1-18. https://doi.org/10.1016/j.jweia.2018.07.009.
- Richards, P. and Hoxey, R. (1993), "Appropriate boundary conditions for computational wind engineering models using the k-ε turbulence model", J. Wind Eng. Ind. Aerod., 46, 145-153.
- Salim, S.M., Buccolieri, R., Chan, A. and Di Sabatino, S. (2011), "Numerical simulation of atmospheric pollutant dispersion in an urban street canyon: Comparison between RANS and LES", J. Wind Eng. Ind. Aerod., 99(2-3), 103-113. https://doi.org/10.1016/j.jweia.2010.12.002.
- Shih, T.H., Liou, W.W., Shabbir, A., Yang, Z. and Zhu, J. (1995), "A new k-epsilon eddy viscosity model for high Reynolds number turbulent flows: Model development and validation", Comput. Fluid., 24(3), 227-238. https://doi.org/10.1016/0045-7930(94)00032-T.
- Smirnov, A., Shi, S. and Celik, I. (2001), "Random flow generation technique for large eddy simulations and particle-dynamics modeling", J. Fluid. Eng., 123(2), 359-371. https://doi.org/10.1115/1.1369598.
- Toja-Silva, F., Kono, T., Peralta, C., Lopez-Garcia, O. and Chen, J. (2018), "A review of computational fluid dynamics (CFD) simulations of the wind flow around buildings for urban wind energy exploitation", J. Wind Eng. Ind. Aerod., 180, 66-87. https://doi.org/10.1016/j.jweia.2018.07.010.
- Tominaga, Y. and Stathopoulos, T. (2011), "CFD modeling of pollution dispersion in a street canyon: Comparison between LES and RANS", J. Wind Eng. Ind. Aerod., 99(4), 340-348. https://doi.org/10.1016/j.jweia.2010.12.005.
- Tominaga, Y., Mochida, A., Murakami, S. and Sawaki, S. (2008), "Comparison of various revised k-ε models and LES applied to flow around a high-rise building model with 1:1:2 shape placed within the surface boundary layer", J. Wind Eng. Ind. Aerod., 96(4), 389-411. https://doi.org/10.1016/j.jweia.2008.01.004.
- Tominaga, Y., Mochida, A., Shirasawa, T., Yoshie, R., Kataoka, H., Harimoto, K. and Nozu, T. (2004), "Cross comparisons of CFD results of wind environment at pedestrian level around a high-rise building and within a building complex", J. Asian Archi. Build. Eng., 3(1), 63-70. https://doi.org/10.3130/jaabe.3.63.
- Tominaga, Y., Mochida, A., Yoshie, R., Kataoka, H., Nozu, T., Yoshikawa, M. and Shirasawa, T. (2008), "AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings", J. Wind Eng. Ind. Aerod., 96(10-11), 1749-1761. https://doi.org/10.1016/j.jweia.2008.02.058.
- van Hooff, T., Blocken, B. and Tominaga, Y. (2017), "On the accuracy of CFD simulations of cross-ventilation flows for a generic isolated building: Comparison of RANS, LES and experiments", Build. Environ., 114, 148-165. https://doi.org/10.1016/j.buildenv.2016.12.019.
- Vinuesa, R., Schlatter, P., Malm, J., Mavriplis, C. and Henningson, D.S. (2015), "Direct numerical simulation of the flow around a wall-mounted square cylinder under various inflow conditions", J. Turbul., 16(6), 555-587. https://doi.org/10.1080/14685248.2014.989232.
- Wang, Y. and Chen, X. (2022), "Evaluation of wind loads on high-rise buildings at various angles of attack by wall-modeled large-eddy simulation", J. Wind Eng. Ind. Aerod., 229, 105160. https://doi.org/10.1016/j.jweia.2022.105160.
- Wind Engineering Information Center in Tokyo Polytechnic University (2017), Wind Pressure Database for High-Rise Building, Japan.
- Wu, Y.T. and Porte-Agel, F. (2012), "Atmospheric turbulence effects on wind-turbine wakes: An LES study", Energie., 5(12), 5340-5362. https://doi.org/10.3390/en5125340.
- Xu, M., Patruno, L., Lo, Y.L., De Miranda, S. and Ubertini, F. (2022), "Simulation of porous claddings using LES and URANS: A 5:1 rectangular cylinder", Wind Struct., 35(1), 67-81. https://doi.org/10.12989/was.2022.35.1.067.
- Yan, B.W. and Li, Q.S. (2015), "Inflow turbulence generation methods with large eddy simulation for wind effects on tall buildings", Comput. Fluid., 116, 158-175. https://doi.org/10.1016/j.compfluid.2015.04.020.
- Yang, Y., Gu, M., Chen, S. and Jin, X. (2009), "New inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer in computational wind engineering", J. Wind Eng. Ind. Aerod., 97(2), 88-95. https://doi.org/10.1016/j.jweia.2008.12.001.
- Yoshie, R., Mochida, A., Tominaga, Y., Kataoka, H., Harimoto, K., Nozu, T. and Shirasawa, T. (2007), "Cooperative project for CFD prediction of pedestrian wind environment in the Architectural Institute of Japan", J. Wind Eng. Ind. Aerod., 95(9-11), 1551-1578. https://doi.org/10.1016/j.jweia.2007.02.023.
- Zhang, X. (2009), CFD Simulation of Neutral ABL Flows, Riso DTU-National Laboratory for Sustainable Energy, Denmark.
- Zhang, Y., Cao, S. and Cao, J. (2022), "An improved consistent inflow turbulence generator for LES evaluation of wind effects on buildings", Build. Environ., 223, 109459. https://doi.org/10.1016/j.buildenv.2022.109459.
- Zhang, Y., Cao, S. and Cao, J. (2023), "Implementation of an embedded LES model with parameter assessment for predicting surface pressure and surrounding flow of an isolated building", Build. Environ., 243, 110633. https://doi.org/10.1016/j.buildenv.2023.110633.
- Zhang, Z., Ji, C., Alam, M.M. and Xu, D. (2020), "DNS of vortex-induced vibrations of a yawed flexible cylinder near a plane boundary", Wind Struct., 30(5), 465. https://doi.org/10.12989/was.2020.30.5.465.
- Zheng, X., Montazeri, H. and Blocken, B. (2020), "CFD simulations of wind flow and mean surface pressure for buildings with balconies: Comparison of RANS and LES", Build. Environ., 173, 106747. https://doi.org/10.1016/j.buildenv.2020.106747.
- Ziarani, N.N., Cook, M.J., Freidooni, F. and O'Sullivan, P.D. (2023), "The role of near-facade flow in wind-dominant single-sided natural ventilation for an isolated three-storey building: An LES study", Build. Environ., 235, 110210. https://doi.org/10.1016/j.buildenv.2023.110210.