DOI QR코드

DOI QR Code

Aerodynamic performance of BFRP bionic plate wind turbine blade based on Fluid-Structure Interaction analysis

  • Tengteng Zheng (The Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education, Southeast University) ;
  • Caiqi Zhao (The Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education, Southeast University) ;
  • Lijie Shang (The Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education, Southeast University)
  • 투고 : 2024.06.11
  • 심사 : 2024.09.30
  • 발행 : 2024.10.25

초록

In this paper, the aerodynamic performance of the Basalt Fiber Reinforced Polymer (BFRP) bionic plate wind turbine blade with different pitch angles, incoming wind speeds and rotational speeds was investigated. The influence of the tower shadow effect on the wake velocity, aerodynamic load, displacement and stress of BFRP bionic plate wind turbine blade under the rated condition was obtained by establishing the whole machine model including tower tube, and the error analysis of the simplified calculation formula of aerodynamic load was carried out. Results show that the incoming wind speed has a great influence on the stress and wind speed backflow and the tower shadow effect has a great influence on the horizontal thrust and torque of BFRP bionic plate wind turbine blade. The simplified calculation formula of aerodynamic load can accurately simulate the displacement and stress trend of BFRP bionic plate wind turbine blade and the recommended values of the pitch angle, incoming wind speed and the rotational speed of BFRP bionic plate wind turbine blade were given. The research results can provide the dynamic parameter reference for the engineering design of BFRP bionic plate wind turbine blade.

키워드

과제정보

This research was financially supported by National Natural Science Foundation of China under grant NO. 51578136, Postgraduate Research & Practice Innovation Program of Jiangsu Province under grant NO. KYCX22_0219, and China Scholarship Council under grant NO. 202306090255.

참고문헌

  1. AbuGazia, M., Damatty, A.E., Dai. K., Liu, W.S. and Ezami, N. (2023), "Evaluation of horizontal-axis-three-blade wind turbines", Wind. Struct. 37(6), 413-423. https://doi.org/10.12989/was.2023.37.6.413.
  2. Du, S.C., Keller, T., Chen, J.X. and Li, Y.S. (2023), "Experimental and theoretical study on out-of-plane compression buckling properties of grid beetle elytron plate", Arch. Appl. Mech. 93(11), 4143-4155. https://doi.org/10.1007/s00419-023-02486-1.
  3. Du, S.J., Zhou, J.W. and Li, F.M. (2022), "Aeroelastic deformation and load reduction of bending-torsion coupled wind turbine blades", Wind. Struct. 35(5), 353-368. https://doi.org/10.12989/was.2022.35.5.353.
  4. GB/T1447-2005 (2005), Test Method for Tensile Properties of Fiber Reinforced Plastics. Beijing, China Standards Press. (In Chinese)
  5. Geng, F., Suiker, A.S.J., Rezaeiha, A., Montazeri, H. and Blocken, B. (2023), "A computational framework for the lifetime prediction of vertical-axis wind turbines: CFD simulations and high-cycle fatigue modeling", Int. J. Solids. Struct. 284, 112504. https://doi.org/10.1016/j.ijsolstr.2023.112504.
  6. Gorgun, E. (2024), "Numerical analysis of inflow turbulence intensity impact on the stress and fatigue life of vertical axis hydrokinetic turbine", Phys. Fluids. 36(1), 015111. https://doi.org/10.1063/5.0186608.
  7. Hijazi, A., Elcheikh, A. and Elkhoury, M. (2023), "Numerical investigation of the use of flexible blades for vertical axis wind turbines", Energ. Convers. Manage. 299, 117867. https://doi.org/10.1016/j.enconman.2023.117867.
  8. Jonkman, J.M., Butterfield, S., Musial, W. and Scott, G. (2009). "Definition of a 5MW reference wind turbine for offshore system development", Office of Scientific and Technical Information Technical Reports. 16-75.
  9. Li, A.T., Sun, Y. and Song, X.B. (2023), "Gradual improvement and reactive intervention: China's policy pathway for developing the wind power industry", Renew. Energ. 216, 119068. https://doi.org/ 10.1016/j.renene.2023.119068.
  10. Li, W.Y., Xiong, Y.X., Su, G.L., Ye, Z.Y., Wang, G.W. and Chen, Z. (2023), "The aerodynamic performance of horizontal axis wind turbines under rotation condition", Sustainability-Basel. 15(16), 12553. https://doi.org/10.3390/su151612553.
  11. Li, Y.F., Hung, J.Y., Syu, J.Y., Chang, S.M. and Kuo, W.S. (2023), "Influence of sizing of basalt fiber on the mechanical behavior of basalt fiber reinforced concrete", J. Mater. Res. Technol. 21, 295-307. https://doi.org/10.1016/j.jmrt.2022.09.045.
  12. Liu, J.W., Liu, P.F., Leng, J.X. and Wang, C.Z. (2022), "Finite element analysis of damage mechanisms of composite wind turbine blade by considering fluid/solid interaction. Part I: Full-scale structure", Compos. Struct. 301, 116212. https://doi.org/10.1016/j.compstruct.2022.116212.
  13. Marzec, L., Bulinski, Z., Krysinski, T. and Tumidajski, J. (2023), "Structural optimisation of H-Rotor wind turbine blade based on one-way Fluid Structure Interaction approach", Renew. Energ. 216, 118957. https://doi.org/10.1016/j.renene.2023.118957.
  14. Shi, C.C., Jin, S.J., Jin, B. and Xu, J.Y. (2024), "Enhancing bonding behavior between basalt fiber-reinforced polymer sheets and concrete using resin pre-coating method and multiwall carbon nanotubes", J. Build. Eng. 84, 108695. https://doi.org/10.1016/j.jobe.2024.108695.
  15. Tan, X.J., Cao, B., Liu, W.C., Ji, C.M., Wang, B. and Li, S. (2024), "Odd mechanical metamaterials with simultaneously expanding or contracting under both compression and tension", Thin. Wall. Struct. 203, 112225. https://doi.org/10.1016/j.tws.2024.112225.
  16. Tian, K.Q., Song, L., Chen, Y.Y., Jiao, X.F., Feng, R. and Tian, R. (2022), "Stress coupling analysis and failure damage evaluation of wind turbine blades during strong winds". Energies. 15, 1339. https://doi.org/10.3390/en15041339.
  17. Tuo, W.Y., Yan, L., Chen, J.X., Chang, X.L., Gao, Y.B. and Wang, Y. (2021), "Effect of the length of basalt fibers on the shear mechanical properties of the core structure of biomimetic fully integrated honeycomb plates", J. Sandw. Struct. Mater. 23, 1527-1540. https://doi.org/10.1177/1099636219900344.
  18. Zhang, S. and Law, A.W.K. (2024). "Performance of Reynolds averaged Navier-Stokes and large eddy simulation models in simulating flows in a crossflow ultraviolet reactor: An experimental evaluation", Water. 16(2), 271. https://doi.org/10.3390/w16020271.
  19. Zhang, Y., Li, L., Wang, L., Zhu, W.D., Li, Y.H. and Wu, J.Q. (2024), "An approximate method for aerodynamic optimization of horizontal axis wind turbine blades", Wind Struct., 38(5), 341-354. https://doi.org/10.12989/was.2024.38.5.341.
  20. Zhao, C.Q., Zheng, T.T., Shang, L.J., Lan, H.T. and Yang, S. (2023), "Research and optimization of lateral compressive performance of the 3-D printed beetle elytron plate" KSCE J. Civ. Eng. 27(8), 3517-3527. https://doi.org/10.1007/s12205-023-2388-7.
  21. Zhao, M., Yu, W.L., Wang, P.G., Qu, Y. and Du, X.L. (2024), "Numerical study on the aerodynamic and fluid-structure interaction of an NREL-5MW wind turbine", China. Ocean. Eng., https://doi.org/10.1007/s13344-024-0030-1.
  22. Zheng, T.T., Zhao, C.Q. and He, J.H. (2023), "Research on fatigue performance of offshore wind turbine blade with basalt fiber bionic plate", Structures. 47, 466-481. https://doi.org/10.1016/j.istruc.2022.11.082.
  23. Zheng, X., Yao, Y., Hu, Z.H., Yu, Z.Y. and Hu, S.Y. (2023), "Influence of turbulence intensity on the aerodynamic performance of wind turbines based on the fluid-structure coupling method", Appl. Sci-Basel. 13, 250. https://doi.org/10.3390/app13010250.