Control of Coating Width and Development of Continuous Coating Process for Organic Thin Films Using Slot-die Coating

슬롯 다이 코팅을 이용한 유기 박막 코팅 폭 제어 및 연속 코팅 공정 개발

  • Gieun Kim (School of Electrical, Electronic & Communication Engineering, Korea University of Technology and Education) ;
  • Youngsin Kim (School of Electrical, Electronic & Communication Engineering, Korea University of Technology and Education) ;
  • Jongwoon Park (School of Electrical, Electronic & Communication Engineering, Korea University of Technology and Education)
  • 김기은 (한국기술교육대학교 전기.전자.통신공학부) ;
  • 김영신 (한국기술교육대학교 전기.전자.통신공학부) ;
  • 박종운 (한국기술교육대학교 전기.전자.통신공학부)
  • Received : 2024.08.13
  • Accepted : 2024.09.12
  • Published : 2024.09.30

Abstract

For potential applications in large-area organic light-emitting diode (OLED) displays, solar cells, sensors, and secondary batteries, we have developed a slot-die coating process that allows control of coating width and continuous coating. In a sheet-to-sheet (S2S) type coating system, coating width adjustment and continuous coating processing are highly demanded to improve productivity and automate the coating process. To control coating width, we have proposed a shim plate with a narrower outlet width and a dual plate slot-die head (DP-SDH) with a meniscus guide. For continuous coating process, we have attempted a lip dipping method and a motorized cleaning module method. Finally, using the DP-SDH and motorized cleaning module method, we have successfully fabricated a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) film with a width of 150 mm, despite the head-lip width being 200 mm.

Keywords

Acknowledgement

이 논문은 2024년도 한국기술교육대학교 교수 교육연구진흥과제 지원에 의하여 연구되었으며 또한 본 과제(결과물)는 2024년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과입니다(2021RIS-004).

References

  1. X. Ding, J. Liu, and T. A. L. Harris, "A review of the operating limits in slot die coating processes," AIChE J., vol. 62, no. 7, pp. 2508-2524, 2016, doi: 10.1002/aic.15268. 
  2. Y. Chang, C. Lin, and T. Liu, "Start-up of slot die coating," Polym. Eng. Sci., vol. 49, no. 6, pp. 1158-1167, Jun. 2009, doi: 10.1002/pen.21360. 
  3. M. Singh, H. M. Haverinen, P. Dhagat, and G. E. Jabbour, "Inkjet Printing-Process and Its Applications," Adv. Mater., vol. 22, no. 6, pp. 673-685, 2010, doi: 10.1002/adma.200901141. 
  4. E. Smarsly et al., "Printing Poly(p-phenyleneethynylene) PLEDs," ACS Appl. Mater. Interfaces, vol. 11, no. 3, pp. 3317-3322, Jan. 2019, doi: 10.1021/acsami.8b18827. 
  5. Y. G. Lee, D. J. Lee, J. H. Bae, J. Y. Lee, B. J. Jung, and J. Lee, "Investigation of nozzle printing parameters for OLED emitting layers," Mol. Cryst. Liq. Cryst., vol. 660, no. 1, pp. 17-23, Jan. 2018, doi: 10.1080/15421406.2018.1452862. 
  6. Y.-F. Chang et al., "Great improvement of operationlifetime for all-solution OLEDs with mixed hosts by blade coating," Org. Electron., vol. 42, pp. 75-86, Mar. 2017, doi: 10.1016/j.orgel.2016.12.003. 
  7. J. Eccher et al., "Thermal Evaporation versus SpinCoating: Electrical Performance in Columnar Liquid Crystal OLEDs," ACS Appl. Mater. Interfaces, vol. 7, no. 30, pp. 16374-16381, Aug. 2015, doi: 10.1021/acsami.5b03496. 
  8. K.-J. Choi, J.-Y. Lee, D.-K. Shin, and J. Park, "Investigation on slot-die coating of hybrid material structure for OLED lightings," J. Phys. Chem. Solids, vol. 95, pp. 119-128, Aug. 2016, doi: 10.1016/j.jpcs.2016.04.006. 
  9. J.-H. Jou et al., "High-efficiency blue organic lightemitting diodes using a 3,5-di(9H-carbazol-9-yl)tetra phenylsilane host via a solution-process," J. Mater. Chem., vol. 20, no. 38, pp. 8411-8416, Sep. 2010, doi: 10.1039/C0JM01163K. 
  10. J. Li et al., "20.8% Slot-Die Coated MAPbI 3 Perovskite Solar Cells by Optimal DMSO-Content and Age of 2-ME Based Precursor Inks," Adv. Energy Mater., vol. 11, no. 10, p. 2003460, Mar. 2021, doi: 10.1002/aenm.202003460. 
  11. T. Guo et al., "Large-Area Smooth Conductive Films Enabled by Scalable Slot-Die Coating of Ti3C2Tx MXene Aqueous Inks," Adv. Funct. Mater., vol. 33, no. 15, p. 2213183, 2023, doi: 10.1002/adfm.202213183. 
  12. S. Kim, J. Lee, M. Jo, and C. Lee, "Numerical Modeling of Ink Widening and Coating Gap in Roll-toRoll Slot-Die Coating of Solid Oxide Fuel Cell Electrolytic Layer," Polymers, vol. 12, no. 12, Art. no. 12, Dec. 2020, doi: 10.3390/polym12122927. 
  13. C.-F. Lin, D. S. Hill Wong, T.-J. Liu, and P.-Y. Wu, "Operating windows of slot die coating: Comparison of theoretical predictions with experimental observations," Adv. Polym. Technol., vol. 29, no. 1, pp. 31-44, 2010, doi: 10.1002/adv.20173. 
  14. M. S. Carvalho and H. S. Kheshgi, "Low-flow limit in slot coating: Theory and experiments," AIChE J., vol. 46, no. 10, pp. 1907-1917, 2000, doi: 10.1002/aic.6904 61003.
  15. E. Witkowska, I. Glowacki, T.-H. Ke, P. Malinowski, and P. Heremans, "Efficient OLEDs Based on Slot-Die Coated Multicomponent Emissive Layer," Polymers, vol. 14, no. 16, Art. no. 16, Jan. 2022, doi: 10.3390/polym14163363. 
  16. M. S. Jung, G. E. Kim, J. P. Na, and J. W. Park, "Development of Intermittent Coating Process Using Roll-to-roll Slot-die Coater," Journal of the Semiconductor & Display Technology, vol. 22, no. 4, pp. 32-37, 2023.