DOI QR코드

DOI QR Code

소집단 논변 활동에서 학생들이 제기하는 불확실성의 유형과 불확실성을 다루는 과정 탐색

Exploring How Students Navigate Various Types of Scientific Uncertainties During Small-Group Argumentation

  • 이정화 (서울대학교) ;
  • 김희백 (서울대학교) ;
  • 심수연 (서울대학교)
  • Jeong-Hwa Lee (Seoul National University) ;
  • Heui-Baik Kim (Seoul National University) ;
  • Soo-Yean Shim (Seoul National University)
  • 투고 : 2024.07.12
  • 심사 : 2024.08.19
  • 발행 : 2024.10.31

초록

본 연구는 소집단 과학 논변 활동에서 학생들이 제기하는 과학적 불확실성을 크게 세 가지로 유형화하고, 각 유형의 불확실성을 다루는 과정이 소집단 논변에 생산적으로 기여한 양상을 구체적으로 탐색하였다. 연구 참여자인 중학교 1학년 세 초점 집단 학생들과 지도 교사는 광합성 단원에서 개발된 논변 수업과 소집단 인터뷰에 참여하였다. 우리는 지도 교사에 의해 진행된 세 초점 집단의 논변 수업 및 인터뷰 영상과 녹음 전사본, 수업 중 학생이 작성한 활동지, 그리고 연구자의 필드 노트를 수집하여 질적으로 분석하였다. 연구 결과, 세 가지 유형의 과학적 불확실성이 소집단 논변에 기여한 양상은 다음의 세 가지로 나타났다. 첫째, 과학 내용 지식에 대한 불확실성은 세 소집단 모두에서 적극적으로 제기되었고, 이는 성취도가 높은 동료나 교사로부터 개념적 지원을 이끌어 논변을 정당화하는 데 활용되었다. 둘째, 데이터에 대한 불확실성은 학생들에게 대안적 관점을 고려해 보도록 하였는데, 구체적으로 데이터 생성 과정에 대한 불확실성은 학생들이 소집단 중심 의견에 대안적 가능성을 제기하는 반박으로 이어졌고, 데이터 패턴에 대한 불확실성은 학생들이 서로 다른 패턴을 함께 고려하여 대안적 논변을 구성해 보고, 반박 및 협력적 추론을 통해 합의된 논변을 구성해 보는 것으로 이어지기도 하였다. 셋째, 과학적 논변을 구성하는 방법에 대한 불확실성은 한 소집단에서 적극적으로 제기되었고, 이는 리더이자 성취도가 높은 학생으로부터 인식적 지원을 이끌어 내 나머지 학생들이 리더의 의견을 무조건 따르지 않고, 각자의 근거를 제시하도록 하였다. 본 연구는 인식적 실행에서 학생들이 드러내는 다양한 유형의 과학적 불확실성을 탐색하고, 학생들이 불확실성을 다루는 과정을 지원하기 위한 교수적 방안을 마련하는 연구에 유용한 시사점을 제공할 수 있다.

This study explored the scientific uncertainties raised by students during small-group scientific argumentation and how the uncertainties contributed to the argumentation. A total of 37 seventh-grade middle school students and a teacher participated in the study. They engaged in small-group argumentation on the topic of photosynthesis. We selected three small focal groups, each consisting of 4-5 students, that actively participated in argumentation and raised uncertainties. We conducted small-group interviews with these three focal groups and the teacher. All lesson and interview videos, audio transcripts, student worksheets, and the researcher's field notes were collected and analyzed qualitatively. The findings revealed that there were three major types of uncertainties that contributed to the small-group argumentation. The first type of uncertainties-those about scientific content knowledge-prompted conceptual support from high-achieving peers or the teacher, facilitating the justification of arguments. The second type-uncertainties about data-encouraged students to consider alternative perspectives and arguments. This led students to raise rebuttals and try to reach a consensus, considering the alternatives. Finally, the third type-uncertainties about how to construct scientific arguments-was raised in one small group and prompted epistemic support from the leader, who was more proficient in argumentation. The leader encouraged other students to present their own evidence, rather than just following her opinions. This study provides useful insights for research on scientific uncertainties that students raise in epistemic practices and for developing instructional strategies to support the management of these uncertainties.

키워드

참고문헌

  1. Allchin, D. (2012). Teaching the nature of science through scientific errors. Science Education, 96(5), 904-926.
  2. Asterhan, C. S., & Schwarz, B. B. (2009). Argumentation and explanation in conceptual change: Indications from protocol analyses of peer-to-peer dialog. Cognitive Science, 33(3), 374-400.
  3. Barton, A. C., & Tan, E. (2009). Funds of knowledge and discourses and hybrid space. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 46(1), 50-73.
  4. Berland, L. K., & Hammer, D. (2012). Students' framings and their participation in scientific argumentation. Perspectives on scientific argumentation: Theory, Practice and Research, 73-93.
  5. Berland, L. K., & McNeill, K. L. (2010). A learning progression for scientific argumentation: Understanding student work and designing supportive instructional contexts. Science Education, 94(5), 765-793.
  6. Buck, Z. E., Lee, H. S., & Flores, J. (2014). I am sure there may be a planet there: Student articulation of uncertainty in argumentation tasks. International Journal of Science Education, 36(14), 2391-2420.
  7. Chen, Y. C. (2022). Epistemic uncertainty and the support of productive struggle during scientific modeling for knowledge co-development. Journal of Research in Science Teaching, 59(3), 383-422.
  8. Chen, Y. C., & Jordan, M. (2024). Student Uncertainty as a Pedagogical Resource (SUPeR) approach for developing a new era of science literacy: practicing and thinking like a scientist. Science Activities, 61(1), 1-15.
  9. Chen, Y. C., & Qiao, X. (2020). Using students' epistemic uncertainty as a pedagogical resource to develop knowledge in argumentation. International Journal of Science Education, 42(13), 2145-2180.
  10. Chen, Y. C., & Techawitthayachinda, R. (2021). Developing deep learning in science classrooms: Tactics to manage epistemic uncertainty during whole-class discussion. Journal of Research in Science Teaching, 58(8), 1083-1116.
  11. Chen, Y. C., Benus, M. J., & Hernandez, J. (2019). Managing uncertainty in scientific argumentation. Science Education, 103(5), 1235-1276.
  12. Chen, Y. C., Jordan, M., Park, J., & Starrett, E. (2024). Navigating student uncertainty for productive struggle: Establishing the importance for and distinguishing types, sources, and desirability of scientific uncertainties. Science Education, 108(4), 1099-1133.
  13. Cherbow, K., & McNeill, K. L. (2022). Planning for student-driven discussions: A revelatory case of curricular sensemaking for epistemic agency. Journal of the Learning Sciences, 31(3), 408-457.
  14. DiSessa, A. A. (1993). Toward an epistemology of physics. Cognition and Instruction, 10(2-3), 105-225.
  15. Duncan, R. G., Chinn, C. A., & Barzilai, S. (2018). Grasp of evidence: Problematizing and expanding the next generation science standards' conceptualization of evidence. Journal of Research in Science Teaching, 55(7), 907-937.
  16. Duschl, R. A., & Osborne, J. (2002). Supporting and promoting argumentation discourse in science education.
  17. Engle, R. A., & Conant, F. R. (2002). Guiding principles for fostering productive disciplinary engagement: Explaining an emergent argument in a community of learners classroom. Cognition and Instruction, 20(4), 399-483.
  18. Entwisle, N. J., & Ramsden, P. (1983). Understanding student learning. London: Croom Helm.
  19. Ford, M. J., & Wargo, B. M. (2012). Dialogic framing of scientific content for conceptual and epistemic understanding. Science Education, 96(3), 369-391.
  20. Garcia-Carmona, A., & Acevedo-Diaz, J. A. (2017). Understanding the nature of science through a critical and reflective analysis of the controversy between Pasteur and Liebig on fermentation. Science & Education, 26, 65-91.
  21. Glaser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory: Strategies for qualitative research. Aldine
  22. Ha, H., Park, J., & Chen, Y. C. (2024). Conceptualizing phases of sensemaking as a trajectory for grasping better understanding: Coordinating student scientific uncertainty as a pedagogical resource. Research in Science Education, 54(3), 359-391.
  23. Hartner-Tiefenthaler, M., Roetzer, K., Bottaro, G., & Peschl, M. F. (2018). When relational and epistemological uncertainty act as driving forces in collaborative knowledge creation processes among university students. Thinking Skills and Creativity, 28, 21-40.
  24. Jimenez-Aleixandre, M. P., Bugallo Rodriguez, A., & Duschl, R. A. (2000). "Doing the lesson" or "doing science": Argument in high school genetics. Science Education, 84(6), 757-792.
  25. Jordan, M. E. (2015). Variation in students' propensities for managing uncertainty. Learning and Individual Differences, 38, 99-106.
  26. Jordan, M. E., & McDaniel Jr, R. R. (2014). Managing uncertainty during collaborative problem solving in elementary school teams: The role of peer influence in robotics engineering activity. Journal of the Learning Sciences, 23(4), 490-536.
  27. Kampourakis, K., & McCain, K. (2019). Uncertainty: How it makes science advance. Oxford University Press.
  28. Kanari, Z., & Millar, R. (2004). Reasoning from data: How students collect and interpret data in science investigations. Journal of Research in Science Teaching, 41(7), 748-769.
  29. Kirch, S. A. (2010). Identifying and resolving uncertainty as a mediated action in science: A comparative analysis of the cultural tools used by scientists and elementary science students at work. Science Education, 94(2), 308-335.
  30. Ko, M. L. M., & Luna, M. J. (2024). The glue that makes it "hang together": A framework for identifying how metadiscourse facilitates uncertainty navigation during knowledge building discussions. Journal of Research in Science Teaching, 61(2), 457-486.
  31. Latour, B. (1987). Science in action: How to follow scientists and engineers through society. Harvard university press.
  32. Lee, H. S., Liu, O. L., Pallant, A., Roohr, K. C., Pryputniewicz, S., & Buck, Z. E. (2014). Assessment of uncertainty-infused scientific argumentation. Journal of Research in Science Teaching, 51(5), 581-605.
  33. Lee, H. S., Pallant, A., Pryputniewicz, S., Lord, T., Mulholland, M., & Liu, O. L. (2019). Automated text scoring and real-time adjustable feedback: Supporting revision of scientific arguments involving uncertainty. Science Education, 103(3), 590-622.
  34. Lee, J., & Kim, H. B. (2021). Exploring Scientific Argumentation Practice from Unproductive to Productive: Focus on Epistemological Resources and Contexts. Journal of The Korean Association For Science Education, 41(3), 193-202.
  35. Luna, M. J. (2018). What does it mean to notice my students' ideas in science today?: An investigation of elementary teachers' practice of noticing their students' thinking in science. Cognition and Instruction, 36(4), 297-329.
  36. Manz, E. (2015). Representing student argumentation as functionally emergent from scientific activity. Review of Educational Research, 85(4), 553-590.
  37. Manz, E., & Suarez, E. (2018). Supporting teachers to negotiate uncertainty for science, students, and teaching. Science Education, 102(4), 771-795.
  38. McNeill, K. L., & Berland, L. (2017). What is (or should be) scientific evidence use in k-12 classrooms?. Journal of Research in Science Teaching, 54(5), 672-689.
  39. Metz, K. E. (2004). Children's understanding of scientific inquiry: Their conceptualization of uncertainty in investigations of their own design. Cognition and Instruction, 22(2), 219-290.
  40. Miller, E., Manz, E., Russ, R., Stroupe, D., & Berland, L. (2018). Addressing the epistemic elephant in the room: Epistemic agency and the next generation science standards. Journal of Research in Science Teaching, 55(7), 1053-1075.
  41. National Research Council (NRC). (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. National Academies Press.
  42. Odden, T. O. B., & Russ, R. S. (2019). Defining sensemaking: Bringing clarity to a fragmented theoretical construct. Science Education, 103(1), 187-205.
  43. Osborne, J. F., & Patterson, A. (2011). Scientific argument and explanation: A necessary distinction?. Science Education, 95(4), 627-638.
  44. Osborne, J., Simon, S., Christodoulou, A., Howell-Richardson, C., & Richardson, K. (2013). Learning to argue: A study of four schools and their attempt to develop the use of argumentation as a common instructional practice and its impact on students. Journal of Research in Science Teaching, 50(3), 315-347.
  45. Phillips, A. M., Watkins, J., & Hammer, D. (2017). Problematizing as a scientific endeavor. Physical Review Physics Education Research, 13(2), 020107.
  46. Reiser, B. J., Novak, M., McGill, T. A., & Penuel, W. R. (2021). Storyline units: An instructional model to support coherence from the students' perspective. Journal of Science Teacher Education, 32(7), 805-829.
  47. Schwarz, C. V., Passmore, C., & Reiser, B. J. (2017). Moving beyond "knowing about" science to making sense of the world. Helping students make sense of the world using next generation science and engineering practices, 3-21.
  48. Stroupe, D. (2014). Examining classroom science practice communities: How teachers and students negotiate epistemic agency and learn science-as- practice. Science Education, 98(3), 487-516.
  49. Stroupe, D., Caballero, M. D., & White, P. (2018). Fostering students' epistemic agency through the co-configuration of moth research. Science Education, 102(6), 1176-1200.
  50. Taber, K. S., & Garcia-Franco, A. (2010). Learning processes in chemistry: Drawing upon cognitive resources to learn about the particulate structure of matter. The Journal of the Learning Sciences, 19(1), 99-142.
  51. Tiberghien, A., Cross, D., & Sensevy, G. (2014). The evolution of classroom physics knowledge in relation to certainty and uncertainty. Journal of Research in Science Teaching, 51(7), 930-961.
  52. Von Aufschnaiter, C., Erduran, S., Osborne, J., & Simon, S. (2008). Arguing to learn and learning to argue: Case studies of how students' argumentation relates to their scientific knowledge. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 45(1), 101-131.
  53. Watkins, J., & Manz, E. (2022). Characterizing pedagogical decision points in sense-making conversations motivated by scientific uncertainty. Science Education, 106(6), 1408-1441.
  54. Watkins, J., Hammer, D., Radoff, J., Jaber, L. Z., & Phillips, A. M. (2018). Positioning as not-understanding: The value of showing uncertainty for engaging in science. Journal of Research in Science Teaching, 55(4), 573-599.
  55. Windschitl, M., Thompson, J., & Braaten, M. (2020). Ambitious science teaching. Harvard Education Press.