DOI QR코드

DOI QR Code

Supply Chain Network Model with Disruption Risk: GA-JAYA-FLC Approach

붕괴위험을 고려한 공급망 네트워크 모델: GA-JAYA-FLC 접근법

  • YoungSu Yun
  • 윤영수 (조선대학교 경상대학 경영학부)
  • Received : 2024.07.25
  • Accepted : 2024.08.23
  • Published : 2024.10.30

Abstract

In this paper, a supply chain network (SCN) model with disruption risk is proposed. Either the disruption of the facilities in each stage of the SCN or the disruption of route between them is considered as the disruption risk in the SCN model. Many conventional studies have considered facility disruption and route disruption separately. However, their disruptions can be occurred simultaneously in real world. This paper proposes the SCN model with facility disruption and route disruption simultaneously. The SCN model is represented as a nonlinear 0-1 programming and solved using a hybrid meta-heuristics approach called GA-JAYA-FLC approach. In numerical experiment, the performance of the GA-JAYA-FLC approach is compared with those of some conventional single and hybrid meta-heuristic approaches using a multi-stage SCN model. Experimental result shows that the GA-JAYA-FLC approach outperforms some conventional single and hybrid meta-heuristic approaches.

본 연구에서는 붕괴위험(Disruption Risk)을 고려한 공급망 네트워크(Supply Chain Network: SCN) 모델을 제안한다. SCN 모델에서 발생하는 붕괴위험은 SCN 각 단계에서 고려되는 설비들의 붕괴 혹은 설비들간 수송경로의 붕괴로 인해 발생한다. 기존의 많은 연구들에서는 이러한 설비 붕괴 및 수송경로의 붕괴를 각각 분리하여 고려하고 있다. 하지만 현실적으로 보면 이러한 붕괴는 동시에 발생할 수 있다. 따라서 본 연구에서는 설비 붕괴 및 수송경로의 붕괴를 함께 가지는 SCN 모델을 제안한다. 제안된 SCN 모델은 비선형0-1계획법 (Non-Linear 0-1 Programming) 모형으로 표시되며, 혼합형 메타휴리스틱 (GA-JAYA-FLC) 접근법을 사용하여 해결한다. 수치실험에서는 다단계의 SCN 모델을 제안하며, 이를 해결하기 위하여 GA-JAYA-FLC 접근법과 기존의 단일형 및 혼합형 메타휴리스틱 접근법들 간의 수행도를 비교분석하였다. 실험결과 본 연구에서 제안한 GA-JAYA-FLC 접근법이 기존의 단일형 및 혼합형 메타휴리스틱 접근법들보다 더 우수한 것을 확인하였다.

Keywords

Acknowledgement

이 논문은 2023학년도 조선대학교 학술연구비의 지원을 받아 연구되었음.

References

  1. Alikhani, R., Eskandarpour, M. and Jahani, H. (2023). Collaborative Distribution Network Design with Surging Demand and Facility Disruptions, International Journal of Production Economics, 262, 108912.
  2. Altiparmak, F., Gen, M., Lin, L. and Karaoglan, I. (2009). A Steady-state Genetic Algorithm for Multiproduct Supply Chain Network Design, Computers and Industrial Engineering, 56(2), 521-537.
  3. An, S., Cui, N., Bai, Y., Xie, W., Chen, M. and Ouyang, Y. (2015). Reliable Emergency Service Facility Location under Facility Disruption, En-route Congestion and in-Facility Queuing, Transportation Research P art E, 82, 199-216.
  4. Anudari, C. and Yun, Y. S. (2021). Supply Chain Network Model considering Supply Disruption in Assembly Industry: Hybrid Genetic Algorithm Approach, Journal of Korea Society of Industrial Information Systems, (26)3, 9-22.
  5. Anudari, C., Yun, Y. S. and Gen, M. (2021). Hybrid Meta-heuristics Approach for solving Supply Chain Network Model under Disruption Risk, 2021 International Conference on Computational Science and Computational Intelligence (CSCI ), Dec. 15-17, Las Vegas, Nevada, USA, pp. 482-487.
  6. Anudari, C., Yun, Y. S. and Gen, M. (2022). Applying GA-VNS Approach to Supply Chain Network Model with Facility and Route Disruptions, International Journal of Management Science and Engineering Management, 17(3). 151-165.
  7. Baghalian, A., Rezapour, S. and Farahani, R. Z. (2013). Robust Supply Chain Network Design with Service Level against Disruptions and Demand Uncertainties: A Real-life Case, European Journal of Operational Research, 227, 199-215.
  8. Cheng, C., Qi, M., Zhang, Y. and Rousseau, L-M. (2018). A Two-stage Robust Approach for the Reliable Logistics Network Design Problem, Transportation Research P art B, 111, 185-202.
  9. De Jong, K. A. (1975). Analysis of the Behavior of a Class of Genetic Adaptive Systems, Dissertation, University of Michigan (University Microfilms No. 76-9381), Michigan, USA.
  10. Fazel, S. J., Rostamkhani, M. and Rashidnejad, M. (2023). Proposing a Bi-objective Model for the Problem of Designing a Resilient Supply Chain Network of Pharmaceutical-health Relief Items under Disruption Conditions by considering Lateral Transshipment, EURO Journal of Decision Processes, 11, 100037.
  11. Ge, C., Zhang, L. and Yuan, Z. (2022). Distributionally Robust Optimization for the Closed-loop Supply Chain Design under Uncertainty, Aichi Journal, https://doi.org/10.1002/aic.17909
  12. Gen, M. and Cheng, R. (2000). Genetic Algorithms and Engineering Optimization, John-Wiley & Sons.
  13. Gen, M., Yun, Y. S. and Erdenebaatar, T. (2023). Hybrid GA and Enhanced Jaya Algorithm for Supply Chain Network Model with Disruption Risk, The 52nd Annual Meeting of the Southeast Decision Sciences Institute 2023(SEDSI), Feb. 15-17, Wilmington, NC. USA. pp. 331-350.
  14. Ghadge, A. Er, M., Ivanov, D. and Chaudhuri, A. (2021). Visualisation of Ripple Effect in Supply Chains under Long-term, Simultaneous Disruptions: A System Dynamics Approach, International Journal of Production Research, 60(20), 6173-6186.
  15. Glover, F., Kelly, J. P. and Laguna, M. (1995). A Genetic Algorithms and Tabu Search: Hybrid for Optimization, Computers and Operation Research, 22, 111-133.
  16. Gucyetmez, M. and Cam, E. (2016). A New Hybrid Algorithm with Genetic-Teaching Learning Optimization (G-TLBO) Technique for Optimizing of Power Flow in Wind-Thermal Power Systems, Electrical Engineering, 98, 145-157.
  17. He, Y., Li, S., Xu, H. and Shi, C. (2018). An In-Depth Analysis of Contingent Sourcing Strategy for Handling Supply Disruptions, IEEE Transactions on Engineering Management, 67, 201-219.
  18. Jabbarzadeh, A., Fahimnia, B., Sheu, J. B. and Moghadam, H. S. (2016). Designing a Supply Chain Resilient to Major Disruptions and Supply/Demand Interruptions, Transportation Research P art B: Methodological, 94, 121-149.
  19. Jabbarzadeh, A., Haughton, M. and Khosrojerdi, A. (2018). Closed-Loop Supply Chain Network Design under Disruption Risks: A Robust Approach with Real World Application, Computers and Industrial Engineering, 116, 178-191.
  20. Jayaraman, V. and Pirkul, H. (2001). Planning and Coordination of Production and Distribution Facilities for Multiple Commodities, European Journal of Operational Research, 133, 394-408.
  21. Kao, Y-T. and Zahara, E. (2008). A Hybrid Genetic Algorithm and Particle Swarm Optimization for Multimodal Functions, Applied Soft Computation, 8, 849-857.
  22. Kennedy, J. and Eberhart, R. C. (1995). Particle Swarm Optimization, Proceedings on IEEE International Conference on Neural Networks, Nov. 27 - Dec. 1, Perth, WA, Australia, pp. 1942-1948.
  23. Kirkpatrick, S., Gelatt, Jr. C. D. and Vecchi, M. P. (1983). Optimization by Simulated Annealing, Science, 220(4598), 671-680.
  24. Khan, A. S., Pruncu, C. L., Khan, R., Naeem, K., Gha, A., Ashraf, P. and Room, S. (2020). A Trade-off Analysis of Economic and Environmental Aspects of a Disruption based Closed-Loop Supply Chain Network, Sustainability, 12, 7056.
  25. Ma, R., Yao, L., Jin, M., Ren, P. and LV, Z. (2016). Robust Environmental Closed-Loop Supply Chain Design under Uncertainty, Chaos, Solitons and Fractals, 89, 195-202.
  26. Meena, P. and Sarmah, S. (2013). Multiple Sourcing under Supplier Failure Risk and Quantity Discount: A Genetic Algorithm Approach, Transportation Research P art E: Logistics and Transportation Review, 50, 84-97.
  27. Peng, P. V., Snyder, L., Lim A. and Liu, Z. (2011). Reliable Logistics Networks Design with Facility Disruptions, Transportation Research P art B, 45, 1190-1211.
  28. Poudel, S. R., Marufuzzaman, M. and Bian, L. (2016). Designing a Reliable Bio-Fuel Supply Chain Network considering Link Failure Probabilities, Computers and Industrial Engineering, 91, 85-99.
  29. Ramshani, M., Ostrowski, J., Zhang, K. and Li, X. (2019). Two Level Uncapacitated Facility Location Problem with Disruptions, Computers and Industrial Engineering, 137, 106089.
  30. Ren, H., Mu, D., Wang, C., Yue, X., Li, Z., Du, J., Zhao, L. and Lim, M. K. (2024). Vulnerability to Geopolitical Disruptions of the Global Electric Vehicle Lithium-Ion Battery Supply Chain Network, Computers and Industrial Engineering, 188, 109919.
  31. Rao, R. V. (2016a). Teaching Learning based Optimization Algorithm and I ts Engineering Applications, Springer.
  32. Rao, R. V. (2016b). A Simple and New Optimization Algorithm for Solving Constrained and Unconstrained Optimization Problems, International Journal of Industrial Engineering Computations, 7, 19-34.
  33. Rao, R. V., Savsani, V. J. and Vakharia, D. P. (2011). Teaching Learning-based Optimization: A Novel Method for Constrained Mechanical Design Optimization Problems, Computers Aided Design, 43(3), 303-315.
  34. Sabouhi, S., Jabalameli, M. S., Jabbarzadeh, A. and Fahimnia, B. (2020). A Multi-Cut L-Shaped Method for Resilient and Responsive Supply Chain Network Design, International Journal of Production Research, 58(24), 7353-7381.
  35. Savaskan, R. C., Bhattacharya, S. and Van Wassenhove, L. V. (2004). Closed Loop Supply Chain Models with Product Remanufacturing, Management Science, 50, 239-252.
  36. Song, Y. H., Wang, G. S., Wang, P. T. and Johns, A. T. (1997). Environmental/Economic Dispatch using Fuzzy Logic Controlled Genetic Algorithms, IEEE Proceedings on Generation, Transmission and Distribution, 144(4), 377-382.
  37. Syam, S. S. (2002). A Model and Methodologies for the Location Problem with Logistical Components, Computers and Operations Research, 29, 1173-1193.
  38. Snyder, L. V., Atan, Z., Peng, P., Rong, Y., Schmitt, A. J. and Sinsoysal, B. (2016). OR/MS Models for Supply Chain Disruptions: A Review, I IE Transactions, 48(2), 89-109.
  39. Taghavi, S. M., Ghezavati, V., Bidhandi, H. M. and Al-e-Hashem, S. M. J. M. (2023). Green‑Resilient Supplier Selection and Order Allocation under Disruption by Utilizing Conditional Value at Risk: Mixed Response Strategies, Process Integration and Optimization for Sustainability, 7, 359-380.
  40. Taghavi, S. M., Ghezavati, V., Bidhandi, H. M. and Al-e-Hashem, S. M. J. M. (2024). Sustainable and Resilient Supplier Selection, Order Allocation, and Production Scheduling Problem under Disruption Utilizing Conditional Value at Risk, Journal of Modelling in Management, 19(2), 658-692.
  41. Tang, C. S. (2006). Perspectives in Supply Chain Risk Management, International Journal of Production Economics, 103, 451-488.
  42. Wang, X., Ruan, J. and Shi, Y. (2012). A Recovery Model for Combinational Disruptions in Logistics Delivery: Considering the Real-World Participators, International Journal of Production Economics, 140, 508-520.
  43. Wang, Y., Ji, X. and Lang, Y. (2023). A Bi-Objective Optimization Model for a Low-Carbon Supply Chain Network with Risk of Uncertain Disruptions, Symmetry, 15, 1707.
  44. Wang, M. and Yao, J. (2023). Intertwined Supply Network Design under Facility and Transportation Disruption from the Viability Perspective, International Journal of Production Research, 61(8), 2513-2543.
  45. Waters, D. (2007). Supply Chain Risk Management: Vulnerability and Resilience in Logistics, Kogan Page.
  46. Wilson, M. C. (2007). The Impact of Transportation Disruptions on Supply Chain Performance, Transportation Research P art E, 43, 295-320.
  47. Yun, Y. S. (2024). Sustainable Closed-Loop Supply Chain Model using Hybrid Meta-Heuristic Approach: Focusing on Domestic Mobile Phone Industry, Journal of Korea Society of Industrial Information Systems, 29(1), 49-62.
  48. Yun, Y. S. and Anudari, C. (2019). Green Supply Chain Network Model: Genetic Algorithm Approach, Journal of Korea Society of Industrial Information Systems, 24(3), 31-38.
  49. Zhalechian, M., Tavakkoli-Moghaddam, R., Zahiri, B. and Mohammadi, M. (2016). Sustainable Design of a Closed-Loop Location-Routing-Inventory Supply Chain Network under Mixed Uncertainty, Transportation Research P art E: Logistics and Transportation Review, 89, 182-214.
  50. Zhao, B., Su, K., Wei, Y. and Shang, T. (2024). Design of Distributionally Robust Closed-Loop Supply Chain Network based on Data-Driven under Disruption Risks, International Journal of Systems Science: Operations and Logistics, 11(1), 2309293.