DOI QR코드

DOI QR Code

복도 환경에서 로봇 위치추정의 랭크 결핍 문제 해결을 위한 적응적 샘플링 기반 파티클 필터링 기법

Adaptive Sampling-Based Particle Filtering for Solving the Rank Deficiency Problem of Robot Localization in Corridor Environments

  • 강수현 ;
  • 권유진 ;
  • 이헌철
  • Suhyeon Kang (Department of IT Convergence Engineering, Kumoh National Institute of Technology) ;
  • Yujin Kwon (School of Electronic Engineering, Kumoh National Institute of Technology) ;
  • Heoncheol Lee (Department of IT Convergence Engineering, Kumoh National Institute of Technology)
  • 투고 : 2024.06.18
  • 심사 : 2024.08.13
  • 발행 : 2024.08.31

초록

This research addresses the problem of robot localization in corridor environments using LiDAR (Light Detection and Ranging). Due to the rank deficiency problem in scan matching with LiDAR alone, the accuracy of robot localization may degenerate seriously. This paper proposes an adaptive sampling-based particle filtering method using depth sensors to overcome the rank deficiency problem. The increase in the sample size in particle filters can be considered to solve the problem. But, it may cause much computation cost. In the proposed method, the sample size of the particle set in the proposed method is adjusted adaptively to the confidence of depth sensor data. The performance of the proposed method was test by real experiments in various environments. The experimental results showed that the proposed method was capable of reducing the estimation errors and more accurate than the conventional method.

키워드

과제정보

이 연구는 정부 (과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 지역지능화혁신인재양성사업 (IITP-2024-RS-2020-II201612) 및 산업통상부 재원으로 해양수산과학기술진흥원의 지원을 받아 수행된 연구임 (20210630, 극한지개발 및 탐사용 협동이동체 시스템 기술개발)

참고문헌

  1. Y. Li, J. L. Guzman, "Lidar for Autonomous Driving: The Principles, Challenges, and Trends for Automotive Lidar and Perception Systems," IEEE Signal Processing Magazine, Vol. 37, No. 4, pp. 50-61, 2020.
  2. M. Wu, J. Y. Sun, "Simultaneous Localization, Mapping and Detection of Moving Objects with Mobile Robot in Dynamic Environments," 2nd International Conference on Computer Engineering and Technology, Vol. 1, pp. V1-696, 2010.
  3. W. Tan, H. Liu, Z. Dong, G. Zhang, H. Bao, "Robust Monocular SLAM in Dynamic Environments," IEEE International Symposium on Mixed and Augmented Reality (ISMAR), 2013.
  4. G. Ge, Y. Zhang, W. Wang, Q. Wang, "Medical Mobile Robot Localization in Hospital Corridor Environment Using Laser SLAM and Text Features," Journal of Imaging Science & Technology, Vol. 66, No. 4, pp. 1-14, 2022.
  5. R. P. Padhy, S. Ahmad, S. Verma, S. Bakshi, P. K. Sa, "Localization of Unmanned Aerial Vehicles in Corridor Environments using Deep Learning," 25th International Conference on Pattern Recognition (ICPR), pp. 9423-9428, 2020.
  6. G. Ge, Y. Zhang, W. Wang, L. Hu, Y. Wang, Q. Jiang, "Visual-feature-assisted Mobile Robot Localization in a Long Corridor Environment," Frontiers of Information Technology & Electronic Engineering Vol. 24, pp. 876-889, 2023.
  7. M. Kim, D. Han, J. Rhee, "Multiview Variational Deep Learning With Application to Practical Indoor Localization," IEEE Internet of Things Journal, Vol. 8, No. 15, pp. 12375-12383, 2021.
  8. L. Batistic, M. Tomic, "Overview of Indoor Positioning System Technologies," International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 0473-0478, 2018.
  9. S. M. Kumar, S. Sinha, "Improved RSSI Based 3D Localization for Indoor Wireless Sensor Network," 4th International Conference on Inventive Research in Computing Applications (ICIRCA), pp. 478-483, 2022.
  10. S. A. Samadh, Q. Liu, X. Liu, N. Ghourchian, M. Allegue, "Indoor Localization Based on Channel State Information," IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet), pp. 1-4, 2019.
  11. N. H. H. Pham, M. A. Nguyen, C. Sun1, "Indoor Positioning System using UWB and Kalman filter to increase the accuracy of the Localization System," IEEE International Conference on Consumer Electronics, pp. 339-340, 2022.
  12. G. Grisetti, C. Stachniss, W. Burgard, "Improving Grid-based SLAM with Rao-Blackwellized Particle Filters by Adaptive Proposals and Selective Resampling," Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2432-2437, 2005.
  13. J. W. Kim, H. C. Lee, "GPU-based Acceleration of Particle Filters for Real-Time Target Localization," KSAS 2021 Fall Conference, pp. 1439-1440, Nov. 2021 (in Korean).
  14. J. Kim, S. Nam, G. Oh, S. Kim, S. Lee, H. C. Lee, "Implementation of a Mobile Multi-Target Search System with 3D SLAM and Object Localization in Indoor Environments," 2021 21st International Conference on Control, Automation and Systems (ICCAS), Jeju, Korea, pp. 2083-2085, Oct. 2021.
  15. I. S. Jang, H. W. Kim, H. C. Lee, "Object-Centered Spectral Matching for Efficient Environmental Information Fusion in Multiple Small Robot Systems," Korean Institute of Information Technology, Vol. 21, No. 8, pp. 27-38, 2023 (in Korean).
  16. S. H. Kim, K. S. Oh, "Development of a Path Tracking Control Algorithm of Autonomous Mobility Using Camera-based Multi-particle Filtering and Weighted Cost Function," The Korean Society of Automotive Engineers (KSAE), Vol. 32, No. 1, pp. 15-26 (in Korean).
  17. D. Han, S. Bae, S. Park, S. Jin, "Obstacle Tracking Algorithm in Port Environment Using Multi-Lidar Sensor," 2021 Korea Automotive Engineering Society Spring Conference, pp. 497-502, 2021 (in Korean).
  18. A. Mukhtar L. Xia, "Target Tracking Using Color Based Particle Filter," 2014 5th International Conference on Intelligent and Advanced Systems (ICIAS), Kuala Lumpur, Malaysia, pp. 1-6, 2014.
  19. P. Tian, "A Particle Filter Object Tracking Based on Feature and Location Fusion," 2015 6th IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, pp. 762-765, 2015.
  20. H. S. Park, C. J. Ho, "Signal Compensation of LiDAR Sensors and Noise Filtering," Journal of Sensor Science and Technology (JSSST), Vol. 28, No. 5, Telecommunication, pp. 334-339, 2019 (in Korean).
  21. S. Baek, A. Kim, S. Ha, T. Kim J. W. Kim, "Development of an Object Tracking System using Sensor Fusion of a Camera and LiDAR," Journal of Korean Institute of Intelligent Systems, Vol. 32, No. 6, pp. 500-506, 2022 (in Korean).
  22. S. W. Jeon, S. Jeong. "Localization and Control of an Outdoor Mobile Robot Based on an Estimator with Sensor Fusion," IEMEK Journal of Embedded Systems and Applications, Vol. 4. No. 2, pp. 69-78. 2009.
  23. R. Ueda, T. Arai, K. Sakamoto, T. Kiduchi, S.Kamiya, "Expansion Resetting for Eecovery from Fatal Error in Monte Carlo Localization - Comparison with Sensor Resetting Methods," 22004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566). Vol. 3, pp. 2481-2486, 2004.
  24. D. Choi, M. Y. Kim, and B. H. Kim, "Dynamic 3D Worker Pose Registration for Safety Monitoring in Manufacturing Environment based on Multi-domain Vision System," IEMEK Journal of Embedded Systems and Applications, Vol. 18, No. 6, pp. 303-310, Dec. 2023.
  25. G. D. Park, J. H. Kim, J. K. Choi, "Estimation of Road Surface Condition and Tilt Angle to Improve the Safety of Mobility Aids for the Elderly," IEMEK Journal of Embedded Systems and Applications, Vol. 17, No. 3, pp. 149-155, 2022.