DOI QR코드

DOI QR Code

Changes in the Growth and Yield of Early-Growing Rice Varieties in Mid-Mountain Areas Based on Climate Change

기후변화에 따른 중산간지 조생종 벼 품종의 연도별 생육 및 수량성 변화

  • Jeong Ju Kim (NICS, RDA) ;
  • Woo Jae Kim (NICS, RDA) ;
  • Hyun Soo Park (NICS, RDA) ;
  • Un Cheol Shin (RDA) ;
  • Do Yeon Kwak (NICS, RDA) ;
  • Jun Hyeon Cho (NICS, RDA)
  • 김정주 (농촌진흥청 국립식량과학원) ;
  • 김우재 (농촌진흥청 국립식량과학원) ;
  • 박현수 (농촌진흥청 국립식량과학원) ;
  • 신운철 (농촌진흥청) ;
  • 곽도연 (농촌진흥청 국립식량과학원) ;
  • 조준현 (농촌진흥청 국립식량과학원)
  • Received : 2024.06.05
  • Accepted : 2024.07.25
  • Published : 2024.09.01

Abstract

To review active climate change responses, especially adjustments to the transplanting time, seven varieties of early-maturing ecotypes grown at Sangju sub-station, located in a mid-mountainous region, were studied from 2007 to 2022. During the ripening stage (July 29 to October 17), the average temperature was 23.2℃, which was a relatively disadvantageous environment compared to the optimal ripening temperature of 20 to 22℃. The heading date of early-growing cultivars was greatly shortened by 10 days for both normal (May 20) and late (June 5) transplanting. In an analysis of the growth characteristics and yield components, the culm and panicle length, number of spikelets/panicles, and the ripening rate showed high variation without a constant tendency over the study period. However, the number of panicles/plants and the ratio of brown rice increased, regardless of the transplanting time, while the 1,000-grain weight tended to decrease. There were no significant differences in yield observed between the two transplanting times, except for some years. Therefore, based on various variables, such as growth, yield, and quality (although not assessed in this study), the shift in transplanting time for early-maturing varieties in the mid-mountainous region from the current time (May 20) to a later time (June 2) needs to be considered to cope with the future impacts of climate change.

본 연구는 남부 중산간지에 위치한 국립식량과학원 상주 출장소에서 2007년부터 2022년까지 '오대' 등 조생종 7품종을 재배하면서 생육 특성 및 수량성을 비교하고 재배 시기 조정 등 적극적인 기후변화 대응을 검토하고자 조사·분석한 결과는 다음과 같다. 1. 벼 생육기간(5월~10월) 상주출장소 연평균 기온은 점차 상승하는 경향이었고 영양생장기(5.21~6.24) 보다 생식생장기(6.25~7.29) 및 등숙기(7.29~9.17)에서 온도 상승경향이 컸다. 2. 조생종 등숙기간(7.29~9.17)의 평균기온은 23.2℃로 일반계 최적 등숙 온도 20~22℃에 비해 상대적으로 등숙온도가 높아 불리한 등숙 환경에 노출되어 있었다. 3. 조생종들의 출수기는 2012년 이후 크게 단축되는 경향을 보였으며 보통기(5.20) 및 만기(6.5) 재배에서 10일 정도 크게 단축되었다. 4. 조생종들의 생육 및 수량구성요소 특성에서 간장, 수장, 및 영화수 등 대부분 형질에서 연차간 변이가 크고 뚜렷한 경향은 없었으나, 이삭수는 이앙 시기와 상관없이 전체적으로 증가하는 경향이었고 천립중은 감소하는 경향을 보였다. 5. 수량성의 경우 일부 년도를 제외하면 뚜렷한 수량 증감의 경향이 없이 보통기와 만기 재배에서 비슷한 것으로 나타났으며, 이러한 결과는 분얼수는 증가하였으나 천립중의 감소에 따른 결과로 보였다. 6. 기상변화에 따른 생육 및 수량과 품질에 대한 여러 변수들을 고려할 때 조생종 재배 지역인 중산간지역의 경우 현재의 보통기 이앙기를 5월 20일에서 6월 5일로 조정하는 것이 필요한 것으로 판단되었다.

Keywords

Acknowledgement

본 논문은 농촌진흥청 연구사업(과제명 : 남부지역 적응 밥쌀용 재배 안정성 벼 품종개발(3단계), 세부과제번호 : PJ016067032024)의 지원에 의해 이루어진 결과이며, 그동안 상주출장소에서 수고해 주신 모든 분들께 감사드립니다.

References

  1. An, S. I., K. J. Ha, K. H. Seo, S. W. Yeh, S. K. Min, and C. H. Ho. 2011. A review of recent climate trends and causes over the Korean peninsula. Clim. Change Res. 2(4) : 237-251.
  2. Cho, E. Y. 2009. The effects of climate change on agricultural production. MS dissertation. Sookmyung Women's University. Seoul, Korea. (in Korean with English abstract).
  3. Choi, K. J., T. S. Park, C. K. Lee, J. T. Kim, J. H. Kim, K. Y. Ha, W. H. Yang, C. K. Lee, K. S. Kwak, H. K. Park, J. K. Nam, J. I. Kim, G. J. Han, Y. S. Cho, Y. H. Park, S. W. Han, J. R. Kim, S. Y. Lee, H. G. Choi, S. H. Cho, H. G. Park, D. J. Ahn, W. K. Joung, S. I. Han, S. Y. Kim, K. C. Jang, S. H. Oh, W. D. Seo, J. E. Ra, J. Y. Kim, and H. W. Kang. 2011. Effect of temperature during grain filling stage on grain quality and taste of cooked rice in mid-late maturing rice varieties. Korean J. Crop Sci. 56(4) : 404-412.
  4. Chung, U., K. S. Cho, and B. W. Lee. 2006. Evaluation of site-specific potential for rice production in Korea under the changing climate. Korean Journal of Agricultural and Forest meteorology 8(4) : 229-241.
  5. Hasegawa T., T. Kuwagata, M. Nishimori, Y. Ishigooka, M. Murakami, M. Yoshimoto, M. Kondo, T. Ishimaru, S. Sawano, Y. Masaki, and H. Matsuzaki. 2009. Recent warming trends and rice growth and yield in japan. In: Proceeding of the MARCO Symposium. Tsukuba, Japan: National Institute for Agro-Environmental Sciences. p. 51.
  6. IPCC. 2007. Climate change 2007 : Mitigation of climate change. contribution working group III to the fourth assessment report of the intergovermental panel on climate change, Cambrige University press, Cambrige, New york, USA.
  7. Jagadish S. V. K., K. Sumfleth, G. Howell, E. Redona, R. Wassmann, and S. Heuer. 2010. Temperature effects on rice : significance and possible adaptation (pp. 19-26). In Advances technologies of rice production for coping with climate change: 'No regret' options for adaptation and mitigation and their potential uptake. Los Banos, Philippines: International Rice Research Institute.
  8. Jagadish S. V. K., P. Q. Craufurd, and T. R. Wheeler. 2007. High temperature stress and spikelet fertility in rice (Oryza sativa L.). J. Exp. Bot. 58: 1627-1635.
  9. Jeong, H. K., and J. H. Han. 2022. Analysis of farmers perceptions of extreme climate events. Journal of Climate Research 13(5) : 649-658.
  10. Kim, C.G. 2010. Weather impacts on rice production in Korea. Korean Journal of Agricultural management and Policy 37(4) : 621-642.
  11. Kim, H. Y., T. Horie, H. Nakagawa, and K. Wada. 1996. Effects of elevated CO2 concentration and high temperature on growth and yield of rice. II. The effect on yield and its components. Jap. J. Crop Sci. 65 : 644-651.
  12. Kim, J. H., W. G. Sang, P. Shin, H. S. Cho, M. C. Seo, B. G. Yoo, and K. S. Kim. 2015. Evaluation of regional climate scenario data for impact assessment of climate change on rice productivity in Korea. J. Crop Sci. Biotech. 18(4) : 257-264.
  13. Kim, S. M., J. H. Hwang, J. W. Han, and K. S. Kim. 2020. A panel analysis on the localty of paddy rice yield's response to temperatute conditions: The case of South Korean municipalities. Journal of Climate Change Research 11(6-1) : 597-607.
  14. Kim, Y. S., K. M. Shim, M. P. Jung, I. T. Choi, and K. K. Kang. 2016. Classification of agroclimatic zones considering the topography characteristics in South Korea. Journal of Climate Change Research 7(4) : 507-512.
  15. Kim, Y. U., K. H. Moon, and B. W. Lee. 2021. Climatic constraints to yield and yield components of temperate japonica rice. Agron. J. 13 : 3489-3497.
  16. Kobata T. and N. Uemuli. 2004. High temperatures during the grain-filling period do not reduce the potential grain dry matter increase of rice. Agron. J. 96 : 406-414.
  17. Korea Meteorological Administration (KMA). 2020. Climate data portal. http://www.climata.go.kr/. Last accessed on June 23, 2020.
  18. Krishnan P., D. K. Swan, C. Bhaskar, S. K. Nayak, and R. N. Dash. 2007. Impact of elevated CO2 and temperature on rice yield and methods of adaptaion as evaluated by crop simulation studies. Agric. Ecosyst. Environ. 122 : 233-242.
  19. Kwak, T. S. and J. H. Yeo. 2004. Varietal variation of yield related and growth analysis related characters in rice based on ecological traits. J. Korean Soc. Int. Agric. 16(2) : 143-149.
  20. Lee, C. K., J. H. Kim, J. Y. Shon, W. H. Yang, Y. H. Yoon, K. J. Choi, and K. S. Kim. 2012. Impacts of climate change on rice production and adaptation method in Korea as evaluated by simulation study. Korean Journal of Agricultural and Forest Meteorology 14(4) : 207-221.
  21. Lee, C. K., K. S. Kwak, J. H. Kim, J. Y. Son, and W. H. Yang. 2011. Impacts of climate change and follow-up cropping season shift on growing period and temperature in different rice maturity types. Korean J. Crop Sci. 56(3) : 233-243.
  22. Lee, E. P., R. H. Jang, K. T. Cho, and Y. H. You. 2014. Effects of elevated CO2 concentration and increased temperature on the growth and crop yield of rice (Oryza sativa) cultivars in Korea-cv. Odaebyeo and cv. Saechucheongbyeo-. Journal of Wetlands Research 16(4) : 363-370.
  23. Lee, G. K., J. Y. Son, B. Gu, and Y. J. Mo. 2013. Investigation of rice yield and quality change and development of adjustment technique to climate change (in Korean with English abstract). Jeonju, Korea: Rural Development Administration, Research Report.
  24. Lee, J. H. 2014. Evaluation of impact on the essential problem according to the new scenario of climate change. RDA Research Report, 2014.
  25. Lee, S. K. and K, H. Kim. 2018. Predicting potential epidemics of rice leaf blast disease using climate scenarios from the best global climate model selected for individual agro-climatic zones in Korea. Journal of Climate Change Research 9(2) : 133-142.
  26. Lee, Y. S. and S. H. Lee. 2008. The impacts of climate change on rice yield. Korean J. Geography 12(3) : 405-416.
  27. National Institute of Meteorological Sciences (NIMS). 2004. Development of technology for calculating regional climate scenarios in response to the climate change agreement (III). Meteorological Laboratory Report, MR040C03. 510p.
  28. Okada M., T. Ilzumi, Y. Hayashi, and M. Yokozawa. 2011. Projecting climate change impacts both on rice quality and yield in japan. J. Agric. Meteorol. 67(4) : 285-295.
  29. Peng, S., J. Huang, J. E. Sheehy, R. C. Laza, R. M. Visperas, X. Zhong, G. S. Centeno, G. S. Khush, and K. G. Cassman. 2004. Rice yields decline with higher night temperature from global warming. Proc. Natl. Acad. Sci. 101(27) : 9971-9975.
  30. Richard S. J. Tol. 2009. The economic effects of climate change. Journal of economic perspectives 23(2) : 29-51.
  31. Rural Development Administraion (RDA). 2022. Project plant for collaborative research program to develop new variety summer crop. pp. 3-66.
  32. Satake T. and S. Yoshida. 1978. High temperature-induced sterility in indica rices at flowering. J. Crop Sci. 47 : 6-17.
  33. Sato K. and K. Inba. 1976. High temperature injuries to ripening of the rice plant. 5. An early decline of the assimiliate storing ability of rice grains under high temperature. Proc. Crop Sci. Soc. Jpn 45 : 156-161.
  34. Shin, J. C., C. G. Lee, Y. H. Yoon, and Y. S. Kang. 2000. Impact of climate variability and change on crop productivity. Proceedings of the Korean Society of Crop Science Conference. The Korean Society of Crop Science, Sangnokresort, Chungju, Korea. pp. 12-27.
  35. Shin, J. H., C. M. Han, J. B. Kwon, and S. K. Kim. 2019. Effect of climate on the yield of differnent maturing rice in the yeongnam inland area over the past 20 years. Korean J. Crop Sci. 64(3) : 193-203.
  36. Suzuki M. 1980. Stuies on distinctive patterns of dry matter production in the building process of grain yields in rice plants grown in the warm region in japan. Bull. Kyushu Nat. Agri. Exp. Sta. 20 : 429-494.
  37. Yoshida S. 1981. Foundamentals of rice crop science. International Rice Research Institute, Los Banos, Philippines. 75p.
  38. Yun, S. H. 1986. Crop research in southern mid-mountain area. Annual research report for 1986. Yeungnam crop experiment station.
  39. Yun, S. H. and J. T. Lee. 2001. Climate change impacts on optimum ripening periods of rice plant and its countermeasure in rice cultivation. Korean Journal of Agricultural and Forest Meteorology 3.1 : 55-70.
  40. Yun, S. H., J. N. Im, J. T. Lee, K. M. Shim, and K. H. Hwang. 2001. Climate change and coping with vulnerability of agricultural productivity. Korean Journal of Agricultural and Forest meteorology 3(4) : 220-227.
  41. Zhang Z., P. Wang, Y. I. Chen, X. Song, X Wei, and P. Shi. 2014. Global warming over 1960-2009 did increase heat stress and reduce cold stress in the major rice-planting areas across china. Eur. J. Agron. 59 : 49-56.