DOI QR코드

DOI QR Code

Research Trends on the Structure and System of Nickel Catalysts for Low-Temperature Processes in Highly Efficient Carbon Dioxide Methanation Reactions

고효율 이산화탄소 메탄화 반응을 위한 저온 공정용 니켈 촉매 구조 및 시스템 연구 동향

  • Jaewon Jang (Carbon & Light Materials Group, Korea Institute of Industrial Technology (KITECH)) ;
  • Jungpil Kim (Carbon & Light Materials Group, Korea Institute of Industrial Technology (KITECH))
  • 장재원 (한국생산기술연구원 탄소경량소재그룹) ;
  • 김정필 (한국생산기술연구원 탄소경량소재그룹)
  • Received : 2024.09.03
  • Accepted : 2024.09.20
  • Published : 2024.11.01

Abstract

This review comprehensively reviews the latest research trends in nickel catalysts for low-temperature CO2 methanation reactions, with special emphasis on catalyst synthesis and reactor design for low-temperature CO2 methanation reactions. In addition to the previously reported catalyst synthesis method of impregnation, the effects of structural and chemical properties of catalysts synthesized by solvothermal synthesis and electrospinning on CO2 methanation reactions were analyzed. We also discuss the potential for process cost reduction and scale-up based on 3D catalyst structures and catalyst stacked reactor designs to improve reaction efficiency. It is found that the efficiency of the CO2 methanation reaction can be maximized by controlling the oxygen vacancies and crystal structure of the catalyst through an innovative catalyst synthesis method, and by increasing the active area of nickel through the 3D structure of the catalyst and the reactor design. It is expected that this review will serve as the basis for the field of converting natural gas into CH4, which can be used as a substitute for natural gas while reducing CO2, a major greenhouse gas.

본 총설은 저온 CO2 메탄화 반응을 위한 니켈 촉매의 최신 연구 동향을 종합적으로 검토하고, 특히 저온 CO2 메탄화 반응을 위한 촉매 합성 및 반응기 설계에 중점을 둔다. 기존에 보고되었던 촉매 합성법인 함침법 이외에 최근 주목 받는 용매 열 합성법, 전기방사법으로 합성한 촉매의 구조적, 화학적 특성이 CO2 메탄화 반응에 미치는 영향을 분석한다. 또한 반응 효율을 향상시키고자 3D 촉매 구조 및 촉매 적층형 반응기 설계를 기반으로 공정 비용 절감 및 스케일업 가능성에 대해서 논의한다. 혁신적인 촉매 합성법을 통해 촉매의 산소 공공 및 결정 구조를 제어하고, 이에 촉매의 3D 구조 및 반응기 설계를 통해 니켈의 활성 면적을 확보함으로써 CO2 메탄화 반응의 효율을 극대화할 수 있음을 규명한다. 본 총설이 주요 온실가스인 CO2를 감축함과 동시에 천연 가스를 대체할 수 있는 CH4로 전환하는 분야의 기초자료로 활용될 것으로 기대된다.

Keywords

Acknowledgement

본 연구는 2024년도 전북 농기계·부품 기술고도화를 위한 인프라활용 기술개발 지원사업의 지원을 받아 수행된 연구임(No. IZ-24-0039).

References

  1. Dai, A., "Increasing Drought Under Global Warming in Observations and Models," Nature Climate Change, 3(1), 52-58(2013).
  2. Coumou, D. and Rahmstorf, S., "A Decade of Weather Extremes," Nature Climate Change, 2(7), 491-496(2012).
  3. Kossin, J. P., Knapp, K. R., Olander, T. L. and Velden, C. S., "Global Increase in Major Tropical Cyclone Exceedance Probability over the Past Four Decades," Proceedings of the National Academy of Sciences, 117(22), 11975-11980(2020).
  4. Van Oldenborgh, G. J., Otto, F. E., Haustein, K. and Cullen H. "Climate Change Increases the Probability of Heavy Rains Like Those of Storm Desmond in the UK-an Event Attribution Study in Near-real Time," Hydrology and Earth System Sciences Discussions, 12(12), 13197-13216(2015).
  5. Odeyomi, O. A., Ejimakor, G. and Isikhuemhen, O. S., "Effects of Climate Change on Crop Yield: Is it a Benefit or Menace?," ESI Preprints, 32, 42-42(2024).
  6. Walsh, K. J., McBride, J. L., Klotzbach, P. J., Balachandran, S., Camargo, S. J., Holland, G., Knutson, T. R., Kossin, J. P., Lee, T. C. and Sobel A., "Tropical Cyclones and Climate Change," Wiley Interdisciplinary Reviews: Climate Change, 7(1), 65-89(2016).
  7. Qu, Q., Jian, S., Chen, A. and Xiao, C., "Investigating the Dynamic Change and Driving Force of Vegetation Carbon Sink in Taihang Mountain, China," Land, 13(9), 1348(2024).
  8. Ye, J., Fanyang, Y., Wang, J., Meng, S. and Tang, D., "A Literature Review of Green Building Policies: Perspectives from Bibliometric Analysis," Buildings, 14(9), 2607(2024).
  9. Yeh, C. H. and Chen, W. M., "Optimizing LCD Structures to Mitigate Carbon Emissions Based on Root-mean-square Values," Applied Optics, 63(25), 6603-6615(2024).
  10. Hasan, G. G., Laouini, S. E., Osman, A. I., Bouafia, A., Althamthami M., Meneceur S., Al-Hazeef M. S., Al-Fatesh A. S. and Rooney, D. W., "Green Synthesis of Mn3O4@ CoO Nanocomposites Using Rosmarinus officinalis L. Extract for Enhanced Photocatalytic Hydrogen Production and CO2 Conversion," Journal of Environmental Chemical Engineering, 113911(2024).
  11. Ming, L., Dae-Yeong, K., Shutaro, N. and Tomohiro, N., "CO2 Methanation Through Gliding Arc Discharge Over Ni/Al2O3," International Journal of Plasma Environmental Science and Technology, 18(02), e02005-e02005(2024).
  12. Farshchi, M. E., Asgharizadeh, K., Jalili, H., Nejatbakhsh, S., Azimi, B., Aghdasinia, H. and Mohammadpourfard, M., "Bimetallic MOF@ CdS Nanorod Composite for Highly Efficient Piezophotocatalytic CO2 Methanation under Visible Light," Journal of Environmental Chemical Engineering, 113909(2024).
  13. Yang, C., Zhang, J., Liu, W., Cheng, Y., Yang, X. and Wang, W., "Rational H2 Partial Pressure over Nickel/Ceria Crystal Enables Efficient and Durable Wide Temperature Zone Air Level CO2 Methanation," Chemistry-A European Journal, e202402516(2024).
  14. Guo, L., Zhang, T., Qiu, J., Bai J., Li, Z., Wang H., Cai, X., Yang, Y. and Xu, Y., "Cobalt-Doped Ni-Based Catalysts for Low-Temperature CO2 Methanation," Available at SSRN 4915073(2024).
  15. Chopendra, G. W., Nakamura, M., Shimada, T., Machida, H. and Norinaga, K., "6-2-3 Development of CO2 Methanation Catalysts Supported on CeO2 And SiC At Elevated Temperatures," Proceedings of the Annual Conference of The Japan Institute of Energy, The 33rd Annual Conference of the Japan Institute of Energy(2024).
  16. Busca, G., Spennati, E., Riani, P. and Garbarino, G., "Looking for An Optimal Composition of Nickel-based Catalysts for CO2 Methanation," Energies, 16(14), 5304(2023).
  17. Zainul, R., Ali, A. B., Jasim, D. J., Al-Bayati, A. D. J., Kaur, I., Kumar, A., Mahariq, I., Hasan, M. A., Islam, S. and Kareem, M., "Biphenyl Monolayer Construction with Single Transition Metal Doping as Electrocatalysts for Conversion CO2 to Fuel," International Journal of Hydrogen Energy, (2024).
  18. Anzola-Rojas, M. D. P., Eng, F., Fuess, L. T., Pozzi, E., Nolasco, M. A., De Wever, H., Pant, D. and Zaiat, M., "Hydrogen Production from Fermented Sugarcane Vinasse and its Utilization by Biosynthesis Processes in a Single-Chambered Microbial Electrolysis Cell, " Available at SSRN 4914019.
  19. Lin, L., Wang, K., Yang, K., Chen, X., Fu, X. and Dai, W., "The Visible-light-assisted Thermocatalytic Methanation of CO2 over Ru/TiO(2-x) Nx," Applied Catalysis B: Environmental, 204, 440-455(2017).
  20. Do, J. Y., Park, N.-K., Seo, M. W., Lee, D., Ryu, H.-J. and Kang, M., "Effective Thermocatalytic Carbon Dioxide Methanation on Ca-inserted NiTiO3 Perovskite," Fuel, 271, 117624(2020).
  21. Rusdan, N. A., Timmiati, S. N., Isahak, W. N. R. W., Yaakob, Z., Lim, K. L. and Khaidar, D. "Recent Application of Core-shell Nanostructured Catalysts for CO2 Thermocatalytic Conversion Processes," Nanomaterials, 12(21), 3877(2022).
  22. Gao, J., Shiong, S. C. S. and Liu, Y., "Reduction of CO2 to Chemicals and Fuels: Thermocatalysis Versus Electrocatalysis," Chemical Engineering Journal, 145033(2023).
  23. Ashok, J., Pati, S., Hongmanorom, P., Tianxi, Z., Junmei, C. and Kawi, S., "A Review of Recent Catalyst Advances in CO2 Methanation Processes," Catalysis Today, 356, 471-489(2020).
  24. Simakov, D. S. and Simakov, D. S., "Thermocatalytic Conversion of CO2," Renewable Synthetic Fuels and Chemicals From Carbon Dioxide: Fundamentals, Catalysis, Design Considerations and Technological Challenges, 1-25(2017).
  25. Lee, W. J., Li, C., Prajitno, H., Yoo, J., Patel, J., Yang, Y. and Lim, S., "Recent Trend in Thermal Catalytic Low Temperature CO2 Methanation: A Critical Review," Catalysis Today, 368, 2-19(2021).
  26. Li, L., Zeng, W., Song, M., Wu, X., Li, G. and Hu, C., "Research Progress and Reaction Mechanism of CO2 Methanation over Nibased Catalysts at Low Temperature: A Review," Catalysts, 12(2), 244(2022).
  27. Wang, Y., Xu, Y., Liu, Q., Sun, J., Ji, S. and Wang, Z. J., "Enhanced Low-temperature Activity for CO2 Methanation over NiMgAl/SiC Composite Catalysts," Journal of Chemical Technology & Biotechnology, 94(12), 3780-3786(2019).
  28. Panagiotopoulou, P., "Hydrogenation of CO2 over Supported Noble Metal Catalysts," Applied Catalysis A: General, 542, 63-70 (2017).
  29. Ocampo, F., Louis, B., Kiwi-Minsker, L. and Roger, A.-C., "Effect of Ce/Zr Composition and Noble Metal Promotion on Nickel Based CexZr1-xO2 Catalysts for Carbon Dioxide Methanation," Applied Catalysis A: General, 392(1-2), 36-44(2011).
  30. Cui, Y., He, S., Yang, J., Gao, R., Hu, K., Chen, X., Xu, L., Deng, C., Lin, C. and Peng, S., "Research Progress of Non-Noble Metal Catalysts for Carbon Dioxide Methanation," Molecules, 29(2), 374(2024).
  31. Gac, W., Zawadzki, W., Rotko, M., Greluk, M., Slowik, G. and Kolb, G. "Effects of Support Composition on the Performance of Nickel Catalysts in CO2 Methanation Reaction," Catalysis Today, 357, 468-482(2020).
  32. Delmelle, R., Duarte, R. B., Franken, T., Burnat, D., Holzer, L., Borgschulte, A. and Heel, A., "Development of Improved Nickel Catalysts for Sorption Enhanced CO2 Methanation," International Journal of Hydrogen Energy, 41(44), 20185-20191(2016).
  33. Le, T. A., Kim, M. S., Lee, S. H., Kim, T. W. and Park, E. D., "CO and CO2 Methanation over Supported Ni Catalysts," Catalysis Today, 293, 89-96(2017).
  34. Liang, C., Zhang, L., Zheng, Y., Zhang, S., Liu, Q., Gao, G., Dong, D., Wang, Y., Xu, L. and Hu, X. "Methanation of CO2 over Nickel Catalysts: Impacts of Acidic/basic Sites on Formation of the Reaction Intermediates," Fuel, 262, 116521(2020).
  35. Tsiotsias, A. I., Charisiou, N. D., Italiano, C., Ferrante, G. D., Pino, L., Vita, A., Sebastian, V., Hinder, S. J., Baker, M. A. and Sharan, A., "Ni-noble Metal Bimetallic Catalysts for Improved Low Temperature CO2 Methanation," Applied Surface Science, 646, 158945(2024).
  36. Musab Ahmed, S., Ren, J., Ullah, I., Lou, H., Xu, N., Abbasi, Z. and Wang, Z., "Ni Based Catalysts for CO2 Methanation: Exploring the Support Role in Structure-Activity Relationships," Chem-SusChem, 17(9), e202400310(2024).
  37. Baig, N., Kammakakam, I. and Falath, W., "Nanomaterials: A Review of Synthesis Methods, Properties, Recent Progress, and Challenges," Materials Advances, 2(6), 1821-1871(2021).
  38. Suo, G., Ahmed, S. M., Cheng, Y., Zhang, J., Li, Z., Hou, X., Yang, Y., Ye, X., Feng, L. and Zhang, L., "Heterostructured CoS2/CuCO2S4@ N-doped Carbon Hollow Sphere for Potassium-ion Batteries," Journal of Colloid and Interface Science, 608, 275-283(2022).
  39. Li, J. P. H., Zhou, X., Pang, Y., Zhu, L., Vovk, E. I., Cong, L., van Bavel, A. P., Li, S. and Yang, Y., "Understanding of Binding Energy Calibration in XPS of Lanthanum Oxide by in situ Treatment," Physical Chemistry Chemical Physics, 21(40), 22351-22358(2019).
  40. Jin, B., Li, S. and Liang, X., "Enhanced Activity and Stability of MgO-promoted Ni/Al2O3 Catalyst for Dry Reforming of Methane: Role of MgO," Fuel, 284, 119082(2021).
  41. Zhang, M., Ye, J., Qu, Y., Lu, X., Luo, K., Dong, J., Lu, N., Niu, Q., Zhang, P. and Dai, S., "Highly Stable and Selective Ni/ZrO2 Nanofiber Catalysts for Efficient CO2 Methanation," ACS Applied Materials & Interfaces, 16(27), 34936-34946(2024).
  42. Hu, F., Ye, R., Jin, C., Liu, D., Chen, X., Li, C., Lim, K. H., Song, G., Wang, T. and Feng, G., "Ni Nanoparticles Enclosed in Highly Mesoporous Nanofibers with Oxygen Vacancies for Efficient CO2 Methanation," Applied Catalysis B: Environmental, 317, 121715(2022).
  43. Vita, A., Italiano, C., Pino, L., Frontera, P., Ferraro, M. and Antonucci, V., "Activity and Stability of Powder and Monolith-coated Ni/GDC Catalysts for CO2 Methanation," Applied Catalysis B: Environmental, 226, 384-395(2018).
  44. Frey, M., Edouard, D. and Roger, A.-C., "Optimization of Structured Cellular Foam-based Catalysts for Low-temperature Carbon Dioxide Methanation in a Platelet Milli-reactor," Comptes Rendus. Chimie, 18(3), 283-292(2015).
  45. Ricca, A., Palma, V., Martino, M. and Meloni, E., "Innovative Catalyst Design for Methane Steam Reforming Intensification," Fuel, 198, 175-182(2017).
  46. Gotz, M., Lefebvre, J., Mors, F., Koch, A. M., Graf, F., Bajohr, S., Reimert, R. and Kolb, T., "Renewable Power-to-Gas: A technological and Economic Review," Renewable Energy, 85, 1371-1390(2016).
  47. Vita, A., Cristiano, G., Italiano, C., Specchia, S., Cipiti, F. and Specchia, V., "Methane Oxy-steam Reforming Reaction: Performances of Ru/γ-Al2O3 Catalysts Loaded on Structured Cordierite Monoliths," International Journal of Hydrogen Energy, 39(32), 18592-18603(2014).
  48. Vita, A., Cristiano, G., Italiano, C., Pino, L. and Specchia, S., "Syngas Production by Methane Oxy-steam Reforming on Me/CeO2 (Me=Rh, Pt, Ni) Catalyst Lined on Cordierite Monoliths," Applied Catalysis B: Environmental, 162, 551-563(2015).
  49. Vita, A., Italiano, C., Fabiano, C., Lagana, M. and Pino, L., "Influence of Ce-precursor and Fuel on Structure and Catalytic Activity of Combustion Synthesized Ni/CeO2 Catalysts for Biogas Oxidative Steam Reforming," Materials Chemistry and Physics, 163, 337-347(2015).
  50. Danaci, S., Protasova, L., Lefevere, J., Bedel, L., Guilet, R. and Marty, P., "Efficient CO2 Methanation over Ni/Al2O3 Coated Structured Catalysts," Catalysis Today, 273, 234-243(2016).
  51. Junaedi, C., Hawley, K., Walsh, D., Roychoudhury, S., Abney, M. and Perry, J., "Compact and Lightweight Sabatier Reactor for Carbon Dioxide Reduction," 41st International Conference on Environmental Systems, (2011).
  52. Lefevere, J., Gysen, M., Mullens, S., Meynen, V. and Van Noyen, J., "The Benefit of Design of Support Architectures for Zeolite Coated Structured Catalysts for Methanol-to-olefin Conversion," Catalysis Today, 216, 18-23(2013).
  53. Ratchahat, S., Sudoh, M., Suzuki, Y., Kawasaki, W., Watanabe, R. and Fukuhara, C., "Development of a Powerful CO2 Methanation Process Using a Structured Ni/CeO2 Catalyst," J. CO2 Util. 24, 210-219(2018).
  54. Schlereth, D. and Hinrichsen, O., "A Fixed-bed Reactor Modeling Study on the Methanation of CO2," Chemical Engineering Research and Design, 92(4), 702-712(2014).
  55. Fukuhara, C., Hayakawa, K., Suzuki, Y., Kawasaki, W. and Watanabe, R., "A Novel Nickel-based Structured Catalyst for CO2 Methanation: A Honeycomb-type Ni/CeO2 Catalyst to Transform Greenhouse Gas Into Useful Resources," Applied Catalysis A: General, 532, 12-18(2017).
  56. Schlereth, D., Donaubauer, P. J. and Hinrichsen, O., "Metallic Honeycombs as Catalyst Supports for Methanation of Carbon Dioxide," Chemical Engineering & Technology, 38(10), 1845-1852 (2015).
  57. Siakavelas, G. I., Charisiou, N. D., AlKhoori, S., AlKhoori, A. A., Sebastian, V., Hinder, S. J., Baker, M. A., Yentekakis, I., Polychronopoulou, K. and Goula, M. A., "Highly Selective and Stable Nickel Catalysts Supported on Ceria Promoted with Sm2O3, Pr2O3 and MgO for the CO2 Methanation Reaction," Applied Catalysis B: Environmental, 282, 119562(2021).
  58. Alarcon, A., Guilera, J., Diaz, J. A. and Andreu, T., "Optimization of Nickel and Ceria Catalyst Content for Synthetic Natural Gas Production Through CO2 Methanation," Fuel Processing Technology, 193, 114-122(2019).
  59. Sholeha, N. A., Jannah, L., Rohma, H. N., Widiastuti, N., Prasetyoko, D., Jalil, A. A. and Bahruji, H., "Synthesis of Zeolite NaY From Dealuminated Metakaolin as Ni Support for CO2 Hydrogenation to Methane," Clays and Clay Minerals, 68(5), 513-523 (2020).
  60. Everett, O. E., Zonetti, P. C., Alves, O. C., de Avillez, R. R. and Appel, L. G. "The Role of Oxygen Vacancies in the CO2 Methanation Employing Ni/ZrO2 doped with Ca," International Journal of Hydrogen Energy, 45(11), 6352-6359(2020).
  61. Lin, J., Ma, C., Luo, J., Kong, X., Xu, Y., Ma, G., Wang, J., Zhang, C., Li, Z. and Ding, M., "Preparation of Ni Based Mesoporous Al2O3 Catalyst with Enhanced CO2 Methanation Performance," RSC Advances, 9(15), 8684-8694(2019).
  62. Bukhari, S. N., Chong, C. C., Setiabudi, H. D., Cheng, Y. W., Teh, L. P. and Jalil, A. A., "Ni/Fibrous Type SBA-15: Highly Active and Coke Resistant Catalyst for CO2 Methanation," Chemical Engineering Science, 229, 116141(2021).
  63. Gnanakumar, E. S., Chandran, N., Kozhevnikov, I. V., Grau-Atienza, A., Fernandez, E. V. R., Sepulveda-Escribano, A. and Shiju, N. R. "Highly Efficient Nickel-niobia Composite Catalysts for Hydrogenation of CO2 to Methane," Chemical Engineering Science, 194, 2-9(2019).
  64. Jiang, Y., Huang, T., Dong, L., Su, T., Li, B., Luo, X., Xie, X., Qin, Z., Xu, C. and Ji, H., "Mn Modified Ni/bentonite for CO2 Methanation," Catalysts, 8(12), 646(2018).
  65. Aziz, M., Jalil, A., Triwahyono, S. and Sidik, S., "Methanation of Carbon Dioxide on Metal-promoted Mesostructured Silica Nanoparticles," Applied Catalysis A: General, 486, 115-122(2014).
  66. Muroyama, H., Tsuda, Y., Asakoshi, T., Masitah, H., Okanishi, T., Matsui, T. and Eguchi, K., "Carbon Dioxide Methanation over Ni Catalysts Supported on Various Metal Oxides," Journal of Catalysis, 343, 178-184(2016).
  67. Li, Y., Men, Y., Liu, S., Wang, J., Wang, K., Tang, Y., An, W., Pan, X. and Li, L., "Remarkably Efficient and Stable Ni/Y2O3 Catalysts for CO2 Methanation: Effect of Citric Acid Addition," Applied Catalysis B: Environmental, 293, 120206(2021).
  68. Cho, E. H., Park, Y.-K., Park, K. Y., Song, D., Koo, K. Y., Jung, U., Yoon, W. R. and Ko, C. H., "Simultaneous Impregnation of Ni and An Additive via One-step Melt-infiltration: Effect of Alkaline-earth Metal (Ca, Mg, Sr, and Ba) Addition on Ni/γ-Al2O3 for CO2 Methanation," Chemical Engineering Journal, 428, 131393 (2022).
  69. Quindimil, A., Bacariza, M. C., Gonzalez-Marcos, J. A., Henriques, C. and Gonzalez-Velasco, J. R., "Enhancing the CO2 Methanation Activity of γ-Al2O3 Supported Mono-and Bi-metallic Catalysts Prepared by Glycerol Assisted Impregnation," Applied Catalysis B: Environmental, 296, 120322(2021).
  70. Dai, Y., Xu, M., Wang, Q., Huang, R., Jin, Y., Bian, B., Tumurbaatar, C., Ishtsog, B., Bold, T. and Yang, Y., "Enhanced Activity and Stability of Ni/La2O2CO3 Catalyst for CO2 Methanation by Metal-carbonate Interaction," Applied Catalysis B: Environmental, 277, 119271(2020).
  71. Martinez, J., Hernandez, E., Alfaro, S., Lopez Medina, R., Valverde Aguilar, G., Albiter, E. and Valenzuela, M. A., "High Selectivity and Stability of Nickel Catalysts for CO2 Methanation: Support Effects," Catalysts, 9(1), 24(2018).
  72. Quindimil, A., De-La-Torre, U., Pereda-Ayo, B., Gonzalez-Marcos, J. A. and Gonzalez-Velasco, J. R., "Ni Catalysts with La as Promoter Supported over Y-and BETA-zeolites for CO2 Methanation," Applied Catalysis B: Environmental, 238, 393-403(2018).
  73. Westermann, A., Azambre, B., Bacariza, M., Graca, I., Ribeiro, M., Lopes, J. and Henriques, C., "Insight into CO2 Methanation Mechanism over NiUSY Zeolites: An Operando IR Study," Applied Catalysis B: Environmental, 174, 120-125(2015).
  74. Huanling, S., Jian, Y., Jun, Z. and Lingjun, C., "Methanation of Carbon Dioxide over a Highly Dispersed Ni/La2O3 Catalyst," Chinese Journal of Catalysis, 31(1), 21-23(2010).