DOI QR코드

DOI QR Code

Balancing Cellular Removal and Extracellular Matrix Preservation for Cardiac Tissue Engineering

  • Kyubae Lee (Department of Biomedical Materials, Konyang University)
  • 투고 : 2024.07.23
  • 심사 : 2024.08.23
  • 발행 : 2024.08.30

초록

This study evaluates the balance between cellular removal and extracellular matrix (ECM) preservation in cardiac tissue engineering by comparing chemical and physical decellularization methods. Cardiac tissues were treated with chemical agents (sodium dodecyl sulfate and Triton X-100) and physical methods (freeze-thawing and ultrasound). These methods were assessed based on residual cellular content, DNA quantification, ECM structural integrity, and preservation of key ECM components like collagen and glycosaminoglycan (GAG). The results revealed that while chemical methods, particularly SDS, achieved more complete cell removal, they significantly compromised ECM integrity. In contrast, physical methods, such as freeze-thawing, preserved ECM structure more effectively, despite moderate cellular removal. The findings underscore the importance of tailoring decellularization techniques to specific cardiac tissue engineering needs, with chemical methods excelling in cell removal and physical methods offering superior ECM preservation. Future research should aim to optimize these methods to achieve a better balance between decellularization efficiency and ECM integrity.

키워드

참고문헌

  1. R. Langer, J. P. Vacanti, "Tissue engineering", Science, Vol.260, No.5110, pp. 920-926, (1993). 
  2. A. Atala, "Engineering tissues, organs and cells", Journal of Tissue Engineering and Regenerative Medicine, Vol.1, No.1, pp. 15-23, (2004). http://dx.doi.org/10.1002/term.18 
  3. T. W. Gilbert, T. L. Sellaro, S. F. Badylak, "Decellularization of tissues and organs", Biomaterials, Vol.27, No.19, pp. 3675-3683, (2006). http://dx.doi.org/10.1016/j.biomaterials.2006.02.014 
  4. S. F. Badylak, D. O. Freytes, T. W. Gilbert, "Extracellular matrix as a biological scaffold material: Structure and function", Acta Biomaterialia, Vol.5, No.1, pp. 1-13, (2009). https://doi.org/10.1016/j.actbio.2008.09.013 
  5. H. C. Ott, T. S. Matthiesen, S. K. Goh, L. D. Black, S. M. Kren, T. I. Netoff, D. A. Taylor, "Perfusion-decellularized matrix: Using nature's platform to engineer a bioartificial heart", Nature Medicine, Vol.14, No.2, pp. 213-221, (2008). http://dx.doi.org/10.1038/nm1684 
  6. T. J. Keane, S. F. Badylak, "The host response to allogeneic and xenogeneic biological scaffold materials", Journal of Tissue Engineering and Regenerative Medicine, Vol.9, No.5, pp. 504-511, (2015). https://doi.org/10.1002/term.1874 
  7. B. D. Lee, "Regeneration of solid phase filter by chemical cleaning", Journal of the Korean Applied Science and Technology, Vol.41, No.1, pp. 19-26, (2024). https://doi.org/10.12925/JKOCS.2024.41.1.19 
  8. P. M. Crapo, T. W. Gilbert, S. F. Badylak, "An overview of tissue and whole organ decellularization processes", Biomaterials, Vol.32, No.12, pp. 3233-3243, (2011). https://doi.org/10.1016/j.biomaterials.2011.01.057 
  9. K. H. Hussein, B. Ahmadzada, J. C. Correa, A. Sultan, S. Wilken, B. Amiot, S. L. Nyberg, "Liver tissue engineering using decellularized scaffolds: Current Progress, challenges, and opportunities", Bioactive Materials, Vol.40, pp. 280-305, (2024). https://doi.org/10.1016/j.bioactmat.2024.06.001 
  10. T. H. Petersen, E. A. Calle, L. Zhao, E. J. Lee, L. Gui, M. B. Raredon, J. E. Nichols, "Tissue-engineered lungs for in vivo implantation", Science, Vol.329, No.5991, pp. 538-541, (2010). https://doi.org/10.1126/science.1189345 
  11. J. M. Wainwright, C. A. Czajka, U. B. Patel, D. O. Freytes, K. Tobita, T. W. Gilbert, S. F. Badylak, "Preparation of cardiac extracellular matrix from an intact porcine heart", Tissue Engineering Part C: Methods, Vol.16, No.3, pp. 525-532, (2010). https://doi.org/10.1089/ten.tec.2009.0392 
  12. R. M. Hodgson, A. J. Beall, B. A. C. Harley, S. Mariani, "Mechanical and structural properties of decellularized human tissues: A focus on ecm sources and scaffolds for bone regeneration", Acta Biomaterialia, Vol.113, pp. 41-59, (2020). 
  13. S. S. Hur, "Characteristic of ultrafine Sparassis crispa(cauliflower mushroom) powder", Journal of the Korean Applied Science and Technology, Vol.40, No.5, pp. 945-954, (2023). https://doi.org/10.12925/JKOCS.2023.40.5.945 
  14. A. Neishabouri, A. S. Khaboushan, F. Daghigh, A. M. Kajbafzadeh, M. M. Zolbin, "Decellularization in tissue engineering and regenerative medicine: evaluation, modification, and application Methods", Frontiers in Bioengineering and Biotechnology, Vol.10, pp. 805299, (2022). https://doi.org/10.3389/fbioe.2022.805299 
  15. J. Liu, Q. Song, W. Yin, C. Li, N. An, Y. Le, Q. Wang, Y. Feng, Y. Hu, Y. Wang, "Bioactive scaffolds for tissue engineering: A review of decellularized extracellular matrix applications and innovations", Exploration, pp. 20230078, (2024). https://doi.org/10.1002/exp.20230078 
  16. A. A. Golebiowska, J. T. Intravaia, V. M. Sathe, S. G. Kumbar, S. P. Nukavarapu, "Decellularized extracellular matrix biomaterials for regenerative therapies: Advances, challenges and clinical prospects", Bioactive Materials, Vol.32, pp. 98-123, (2024). https://doi.org/10.1016/j.bioactmat.2023.09.017 
  17. C. Cottle, A. P. Porter, A. Lipat, C. T. Lyles, J. Nguyen, G. Moll, R. Chinnadurai, "Impact of cryopreservation and freeze-thawing on therapeutic properties of mesenchymal stromal/stem cells and other common cellular therapeutics", Current Stem Cell Reports, Vol.8, No.2, pp. 72-92, (2022). https://doi.org/10.1007/s40778-022-00212-1 
  18. A. Gilpin, Y. Yang, "Decellularization strategies for regenerative medicine: from processing techniques to applications", BioMed Research International, pp. 1-13, (2017). https://doi.org/10.1155/2017/9831534 
  19. T. Chang, G. Zhao, "Ice inhibition for cryopreservation: materials, strategies, and challenges", Advanced Science, Vol.8, No.6, pp. 2002425, (2021). https://doi.org/10.1002/advs.202002425 
  20. H. V. Faria, J. Noro, R. L. Reis, R. P. Pirraco, "Extracellular matrix-derived materials for tissue engineering and regenerative medicine: A journey from isolation to characterization and application", Bioactive Materials, Vol.34, pp. 494-519, (2024). https://doi.org/10.1016/j.bioactmat.2024.01.004