과제정보
이 논문은 2024년 정부(방위사업청)의 재원으로 국방기술진흥연구소의 지원을 받아 수행된 물리데이터 기반 지능형 소나 신호 탐지 기술 연구임(No. KRIT-CT-22-052, 물리데이터 기반 지능형 소나 신호탐지 기술 연구).
참고문헌
- A. D. Waite, SONAR for Practicing Engineers, 3rd ed. (Wiley, Hoboken, 2001), introduction.
- G. De Magistris, P. Stinco, J. R. Bates, J. M. Topple, G. Canepa, G. Ferri, A. Tesei, and K. L. Page, "Automatic object classification for low-frequency active sonar using convolutional neural networks," Proc. OCEANS, 1-6 (2019).
- D. P. Williams, "Underwater target classification in synthetic aperture sonar imagery using deep convolutional neural networks," Proc. 23rd ICPR, 2497-2502 (2016).
- F. Liu, T. Shen, Z. Luo, D. Zhao, and S. Guo, "Underwater target recognition using convolutional recurrent neural networks with 3-D Mel-spectrogram and data augmentation," Appl. Acoust. 178, 107989 (2021).
- B. Shi, X. Bai, and C. Yao, "An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition," IEEE Trans. Pattern Anal. Mach. Intell. 2298-2304 (2016).
- X. Zheng, H. Chen, and Y. Song, "Zheng ustc team's submission for dcase2021 task4-semi-supervised sound event detection," DCASE, Tech. Rep., 2021.
- J. Ebbers and R. Haeb-Umbach, "Pre-training and self-training for sound event detection in domestic environments," DCASE, Tech. Rep., 2022.
- S. Xiao, J. Shen, A. Hu, X. Zhang, P. Zhang, and Y. Yan, "Sound event detection with weak prediction for dcase 2023 challenge task4a," DCASE Tech. Rep., 2023.
- W. Zhang, B. Lin, Y. Yan, A. Zhou, Y. Ye, and X. Zhu, "Multi-features fusion for underwater acoustic target recognition based on convolution recurrent neural networks," Proc. IEEE BigDIA, 342-346 (2022).
- P. Qi, G. Yin, and L. Zhang, "Underwater acoustic target recognition using RCRNN and wavelet-auditory feature," Proc. Multimed. Tools and Appl. 47295-47317 (2024).
- D.-H. Lee, "Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks," Proc. ICML, 896 (2013).
- X. Dong, J. Shen, and L. Shao, "Rethinking clustering-based pseudo-labeling for unsupervised meta-learning," Proc. ECCV, 169-186 (2022).
- D. A. Abraham, Underwater Acoustic Signal Processing: Modeling, Detection, and Estimation (Springer, Cham, 2019), pp. 180-189.
- G. Kim and S. Lee, "Reverberation suppression method for active sonar systems using non-negative matrix factorization with pre-trained frequency basis matrix," IEEE Access, 9, 148060-148075 (2021).
- D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," Proc. 3rd ICLR, 1412.6980 (2015).
- A. Geron, Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd ed. (O'Reilly Media, Inc., California, 2022), pp. 93-98.