DOI QR코드

DOI QR Code

Analysis of Operation Parameter Impact on Electrical Characteristics Activation in TiO2/TiO2-x Based Memristors

TiO2/TiO2-x 기반 멤리스터의 전기적 특성 활성화에 공정 변수가 미치는 영향 분석

  • Beom Gu Lee (College of Electrical and Computer Engineering, Chungbuk National University) ;
  • Jae-Yun Lee (College of Electrical and Computer Engineering, Chungbuk National University) ;
  • Jung Hun Choi (College of Electrical and Computer Engineering, Chungbuk National University) ;
  • Jung Moo Seo (College of Electrical and Computer Engineering, Chungbuk National University) ;
  • Sung-Jin Kim (College of Electrical and Computer Engineering, Chungbuk National University)
  • 이범구 (충북대학교 컴퓨터공학과) ;
  • 이재윤 (충북대학교 컴퓨터공학과) ;
  • 최정훈 (충북대학교 컴퓨터공학과) ;
  • 서정무 (충북대학교 컴퓨터공학과) ;
  • 김성진 (충북대학교 컴퓨터공학과)
  • Received : 2024.07.18
  • Accepted : 2024.08.26
  • Published : 2024.11.01

Abstract

Memristors, as next-generation memory devices, have garnered significant academic interest. Among them, TiO2/TiO2-x based memristors have particularly attracted substantial scholarly attention. Research on the activation and stability of TiO2 based memristor devices through process parameters is essential. Here, to determine the impact of process parameters on the activation of TiO2/TiO2-x based memristor devices, we fabricated the memristor devices using a sputtering system and conducted annealing at 400℃. Additionally, to analyze the electrical characteristics of the devices, we measured the I-V curves and C-V curves. Also, we examined TiO2/TiO2-x based memristor devices surface using SEM. Consequently, it was observed that the devices subjected to annealing exhibited improved hysteresis curves in the I-V characteristics, a reduced bandgap, and changes in resistance compared to the non-annealed devices. The retention test results further demonstrated that the set/reset characteristics of the devices were stable, confirming their potential applicability as memory devices.

Keywords

Acknowledgement

This research was partly supported by Innovative Human Resource Development for Local Intellectualization program through the Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) IITP-2024-2020-0-01462 (34%), in part by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by Ministry of Education under Grant 2020R1A6A1A12047945 (33%), and in part by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education under Grant RS-2023-00249610 (33%).

References

  1. Y. Chen, IEEE Trans. Electron Devices, 67, 1420 (2024). doi: https://doi.org/10.1109/TED.2019.2961505 
  2. K. Sun, J. Chen, and X. Yan, Adv. Funct. Mater., 31, 2006773 (2021). doi: https://doi.org/10.1002/adfm.202006773 
  3. D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, Nature, 453, 80 (2008). doi: https://doi.org/10.1038/nature06932 
  4. W. Chen, L. Song, S. Wang, Z. Zhang, G. Wang, G. Hu, and S. Gao, Adv. Electron. Mater., 9, 2200833 (2023). doi: https://doi.org/10.1002/aelm.202200833 
  5. F. T. Chin, Y. H. Lin, H. C. You, W. L. Yang, L. M. Lin, Y. P. Hsiao, C. M. Ko, and T. S. Chao, Nanoscale Res. Lett., 9, 592 (2014). doi: https://doi.org/10.1186/1556-276X-9-592 
  6. Y. Li, Z. Wang, R. Midya, Q. Xia, and J. J. Yang, J. Phys. D: Appl. Phys., 51, 503002 (2018). doi: https://doi.org/10.1088/1361-6463/aade3f 
  7. R. Waser, R. Dittmann, G. Staikov, and K. Szot, Adv. Mater., 21, 2632 (2009). doi: https://doi.org/10.1002/adma.200900375 
  8. Q. Li, A. Khiat, I. Salaoru, C. Papavassiliou, X. Hu, and T. Prodromakis, Sci. Rep., 4, 4522 (2014). doi: https://doi.org/10.1038/srep04522 
  9. S. J. Song, J. Y. Seok, J. H. Yoon, K. M. Kim, G. H. Kim, M. H. Lee, and C. S. Hwang, Sci. Rep., 3, 3443 (2013). doi: https://doi.org/10.1038/srep03443 
  10. K. Eshraghian, K. R. Cho, O. Kavehei, S. K. Kang, D. Abbott, and S.M.S. Kang, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 19, 1407 (2011). doi: https://doi.org/10.1109/TVLSI.2010.2049867 
  11. A. Sahoo, P. Padhan, and W. Prellier, ACS Appl. Mater. Interfaces, 9, 36423 (2017). doi: https://doi.org/10.1021/acsami.7b11930 
  12. R. U. Chandrasena, W. Yang, Q. Lei, M. U. Delgado-Jaime, K. D. Wijesekara, M. Golalikhani, B. A. Davidson, E. Arenholz, K. Kobayashi, M. Kobata, F.M.F. de Groot, U. Aschauer, N. A. Spaldin, X. Xi, and A. X. Gray, Nano Lett., 17, 794 (2017). doi: https://doi.org/10.1021/acs.nanolett.6b03986 
  13. Y. Xiao, B. Jiang, Z. Zhang, S. Ke, Y. Jin, X. Wen, and C. Ye, Sci. Technol. Adv. Mater., 24, 2162323 (2023). doi: https://doi.org/10.1080/14686996.2022.2162323 
  14. S. Lee, H. Kim, D. J. Yun, S. W. Rhee, and K. Yong, Appl. Phys. Lett., 95, 262113 (2009). doi: https://doi.org/10.1063/1.3280864 
  15. S. Kim and Y. K. Choi, IEEE Trans. Electron Devices, 56, 3049 (2009). doi: https://doi.org/10.1109/TED.2009.2032597 
  16. S. Kim, H. Moon, D. Gupta, S. Yoo, and Y. K. Choi, IEEE Trans. Electron Devices, 56, 696 (2009). doi: https://doi.org/10.1109/TED.2009.2012522 
  17. M. Lanza and H. Tian, Adv. Funct. Mater., 34, 2314512 (2024). doi: https://doi.org/10.1002/adfm.202314512 
  18. Y. H. Song, J. M. Lim, S. Khot, D. Jung, and Y. Kwon, Korean J. Met. Mater., 62, 212 (2024). doi: https://doi.org/10.3365/KJMM.2024.62.3.212 
  19. L. Chua, IEEE Trans. Circuit Theory, 18, 507 (1971). doi: https://doi.org/10.1109/TCT.1971.1083337 
  20. H. Ha and O. Kim, Appl. Phys. Lett., 93, 033309 (2008). doi: https://doi.org/10.1063/1.2960998 
  21. K. Hoshino, N. L. Peterson, and C. L. Wiley, J. Phys. Chem. Solids, 46, 1397 (1985). doi: https://doi.org/10.1016/0022-3697(85)90079-4 
  22. T. Cao, T. Xia, L. Zhou, G. Li, X. Chen, H. Tian, J. Zhao, J. O. Wang, W. Zhang, S. Li, S. Meng, and H. Guo, J. Phys. D: Appl. Phys., 53, 424001 (2020). doi: https://doi.org/10.1088/1361-6463/ab9d99 
  23. M. Son, J. Lee, J. Park, J. Shin, G. Choi, S. Jung, W. Lee, S. Kim, S. Park, and H. Hwang, IEEE Electron Device Lett., 32, 1579 (2011). doi: https://doi.org/10.1109/LED.2011.2163697 
  24. S. Kim and Y. K. Choi, IEEE Trans. Electron Devices, 56, 3049 (2009). doi: https://doi.org/10.1109/TED.2009.2032597 
  25. A. K. Jena, M. C. Sahu, K. U. Mohanan, S. K. Mallik, S. Sahoo, G. K. Pradhan, and S. Sahoo, ACS Appl. Mater. Interfaces, 15, 3574 (2023). doi: https://doi.org/10.1021/acsami.2c17228 
  26. H. J. Lee, J. H. Kim, H. J. Kim, and S. N. Lee, Materials, 17, 2727 (2024). doi: https://doi.org/10.3390/ma17112727 
  27. C. P. Lin, H. Chen, A. Nakaruk, P. Koshy, and C. C. Sorrell, Energy Procedia, 34, 627 (2013). doi: https://doi.org/10.1016/j.egypro.2013.06.794 
  28. J. Klein, L. Kampermann, B. Mockenhaupt, M. Behrens, J. Strunk, and G. Bacher, Adv. Funct. Mater., 33, 2304523 (2023). doi: https://doi.org/10.1002/adfm.202304523 
  29. L. Bian, M. Song, T. Zhou, X. Zhao, and Q. Dai, J. Rare Earths, 27, 461 (2009). doi: https://doi.org/10.1016/S1002-0721(08)60270-7 
  30. L. G. Ferreira, M. Marques, and L. K. Teles, Phys. Rev. B, 78, 125116 (2008). doi: https://doi.org/10.1103/PhysRevB.78.125116 
  31. P. Makula, M. Pacia, and W. Macyk, J. Phys. Chem. Lett., 9, 6814 (2018). doi: https://doi.org/10.1021/acs.jpclett.8b02892 
  32. L. Wang, Z. Su, and C. Wang, Appl. Phys. Lett., 100, 213303 (2012). doi: https://doi.org/10.1063/1.4721518 
  33. T. Wang, Z. Cui, Y. Liu, D. Lu, M. Wang, C. Wan, W. R. Leow, C. Wang, L. Pan, X. Cao, Y. Huang, Z. Liu, A.I.Y. Tok, and X. Chen, Adv. Mater., 34, 2106212 (2022). doi: https://doi.org/10.1002/adma.202106212 
  34. W. G. Lee, B. E. Park, and K. E. Park, Met. Mater. Int., 19, 597 (2023). doi: https://doi.org/10.1007/s12540-013-3032