DOI QR코드

DOI QR Code

Impact of Hydrogen-Doped Indium Oxide Films on the Performance of Silicon Heterojunction Solar Cells

수소 도핑된 인듐 산화막에 따른 실리콘 이종 접합 태양전지 성능에 미치는 영향

  • Hyeong Gi Park (The Institute of Basic Science, Kunsan National University) ;
  • Jaehyeong Lee (School of Electronic and Electrical Engineering, Sungkyunkwan University) ;
  • Junsin Yi (School of Electronic and Electrical Engineering, Sungkyunkwan University)
  • 박형기 (군산대학교 기초과학연구소) ;
  • 이재형 (성균관대학교 전자전기공학부) ;
  • 이준신 (성균관대학교 전자전기공학부)
  • Received : 2024.08.02
  • Accepted : 2024.09.09
  • Published : 2024.11.01

Abstract

We investigated the potential of IO:H thin films and hydrogen doping to improve current density and fill factor for enhancing the performance of silicon heterojunction solar cells. We revealed that a transmittance of 86.7% and work function of 5.4 eV could be achieved by injecting 3 sccm of hydrogen gas. The lattice constant of 1.037 nm at the AB site indicates an anion antibonding tendency, and the work function increases as the Fermi level shifts to the valence band. Based on these findings, we fabricated a silicon heterojunction solar cell and achieved an efficiency of 18.53%, while computer simulation confirmed a conversion efficiency of 24.65%, an open-circuit voltage of 724 mV, and a fill factor of 82.72% at a current density of 41.15 mA/cm2.

Keywords

Acknowledgement

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단 혁신성장 선도 고급연구인재 육성사업의 지원을 받아 수행된 연구입니다(No.NRF2021M3H1A104892211).

References

  1. S. Park, S. Jeong, J. Choi, Y. Kim, and J. Yi, J. Korean Inst. Electr. Electron. Mater. Eng., 36, 49 (2023). doi: https://doi.org/10.4313/JKEM.2023.36.1.8
  2. H. Park, Y. J. Lee, J. Park, Y. Kim, J. Yi, Y. Lee, S. Kim, C. K. Park, and K. J. Lim, Trans. Electr. Electron. Mater., 19, 165 (2018). doi: https://doi.org/10.1007/s42341-018-0026-8
  3. C. Han, R. Santbergen, M. van Duffelen, P. Procel, Y. Zhao, G. Yang, X. Zhang, M. Zeman, L. Mazzarella, and O. Isabella, Prog. Photovoltaics: Res. Appl., 30, 750 (2022). doi: https://doi.org/10.1002/pip.3550
  4. Y. Jiang, T. Feurer, R. Carron, G. T. Sevilla, T. Moser, S. Pisoni, R. Erni, M. D. Rossell, M. Ochoa, R. Hertwig, A. N. Tiwari, and F. Fu, ACS Nano, 14, 7502 (2020). doi: https://doi.org/10.1021/acsnano.0c03265
  5. L. Antognini, C. Sthioul, J. Dreon, V. Paratte, D. Turkay, L. L. Senaud, C. Ballif, and M. Boccard, Sol. Energy Mater. Sol. Cells, 248, 111975 (2022). doi: https://doi.org/10.1016/j.solmat.2022.111975
  6. H. Lin, M. Yang, X. Ru, G. Wang, S. Yin, F. Peng, C. Hong, M. Qu, J. Lu, L. Fang, C. Han, P. Procel, O. Isabella, P. Gao, Z. Li, and X. Xu, Nat. Energy, 8, 789 (2023). doi: https://doi.org/10.1038/s41560-023-01255-2
  7. P. Muralidharan, M. A. Leilaeioun, W. Weigand, Z. C. Holman, S. M. Goodnick, and D. Vasileska, IEEE J. Photovoltaics, 10, 363 (2020). doi: https://doi.org/10.1109/JPHOTOV.2019.2957655
  8. K. U. Ritzau, M. Bivour, S. Schroer, H. Steinkemper, P. Reinecke, F. Wagner, and M. Hermle, Sol. Energy Mater. Sol. Cells, 131, 9 (2014). doi: https://doi.org/10.1016/j.solmat.2014.06.026
  9. D. Rached and R. Mostefaoui, Thin Solid Films, 516, 5087 (2008). doi: https://doi.org/10.1016/j.tsf.2008.02.031
  10. C. Messmer, M. Bivour, C. Luderer, L. Tutsch, J. Schon, and M. Hermle, IEEE J. Photovoltaics, 10, 343 (2020). doi: https://doi.org/10.1109/JPHOTOV.2019.2957672
  11. N. Ahmad, H. Zhou, P. Fan, and G. Liang, EcoMat, 4, e12156 (2022). doi: https://doi.org/10.1002/eom2.12156
  12. T. Koida, H. Fujiwara, and M. Kondo, J. Non-Cryst. Solids, 354, 2805 (2008). doi: https://doi.org/10.1016/j.jnoncrysol.2007.09.076
  13. P.D.C. King, R. L. Lichti, Y. G. Celebi, J. M. Gil, R. C. Vilao, H. V. Alberto, J. Piroto Duarte, D. J. Payne, R. G. Egdell, I. McKenzie, C. F. McConville, S.F.J. Cox, and T. D. Veal, Phys. Rev. B, 80, 081201(R) (2009). doi: https://doi.org/10.1103/PhysRevB.80.081201
  14. T. Koida, H. Sai, and M. Kondo, Thin Solid Films, 518, 2930 (2010). doi: https://doi.org/10.1016/j.tsf.2009.08.060
  15. J. Weber, E. V. Lavrov, and F. Herklotz, Phys. B, 407, 1456 (2012). doi: https://doi.org/10.1016/j.physb.2011.09.061
  16. D. Erfurt, M. D. Heinemann, S. S. Schmidt, S. Korner, B. Szyszka, R. Klenk, and R. Schlatmann, ACS Appl. Energy Mater., 1, 5490 (2018). doi: https://doi.org/10.1021/acsaem.8b01039
  17. C. G. Van de Walle and A. Janotti, Proc. 11th Europhysical Conference on Defects in Insulating Materials (EURODIM 2010) (University of Pecs, Hungary, 2010) p. 012001. doi: https://doi.org/10.1088/1757-899X/15/1/012001
  18. K. Okada, S. Kohiki, S. Luo, D. Sekiba, S. Ishii, M. Mitome, A. Kohno, T. Tajiri, and F. Shoji, Thin Solid Films, 519, 3557 (2011). doi: https://doi.org/10.1016/j.tsf.2011.01.249
  19. M. Ando, M. Takabatake, E. Nishimura, F. Leblanc, K. I. Onisawa, and T. Minemura, J. Non-Cryst. Solids, 198, 28 (1996). doi: https://doi.org/10.1016/0022-3093(95)00648-6
  20. S. Kim, J. Jung, Y. J. Lee, S. Ahn, S. Q. Hussain, J. Park, B. S. Song, S. Han, V. A. Dao, J. Lee, and J. Yi, Mater. Res. Bull., 58, 83 (2014). doi: https://doi.org/10.1016/j.materresbull.2014.05.003
  21. L. Zhao, C. L. Zhou, H. L. Li, H. W. Diao, and W. J. Wang, Phys. Status Solidi A, 205, 1215 (2008). doi: https://doi.org/10.1002/pssa.200723276
  22. EL-CAT Inc., Properties of Silicon and Silicon Wafers, https://www.el-cat.com/silicon-properties.htm
  23. Si - Silicon Electrical Properties, http://www.ioffe.ru/SVA/NSM/Semicond/Si/electric.html
  24. A.H.T. Le, V. A. Dao, D. P. Pham, S. Kim, S. Dutta, C.P.T. Nguyen, Y. Lee, Y. Kim, and J. Yi, Sol. Energy Mater. Sol. Cells, 192, 36 (2019). doi: https://doi.org/10.1016/j.solmat.2018.12.001
  25. C. Han, L. Mazzarella, Y. Zhao, G. Yang, P. Procel, M. Tijssen, A. Montes, L. Spitaleri, A. Gulino, X. Zhang, O. Isabella, and M. Zeman, ACS Appl. Mater. Interfaces, 11, 45586 (2019). doi: https://doi.org/10.1021/acsami.9b14709
  26. Y. Magari, T. Kataoka, W. Yeh, and M. Furuta, Nat. Commun., 13, 1078 (2022). doi: https://doi.org/10.1038/s41467-022-28480-9
  27. T. Koida, H. Fujiwara, and M. Kondo, Jpn. J. Appl. Phys., 46, L685 (2007). doi: https://doi.org/10.1143/JJAP.46.L685
  28. H. G. Park, S. Q. Hussain, J. Park, and J. Yi, J. Mater. Sci., 59, 13873 (2024). doi: https://doi.org/10.1007/s10853-024-09506-7
  29. S. Limpijumnong, P. Reunchan, A. Janotti, and C. G. Van de Walle, Phys. Rev. B, 80, 193202 (2009). doi: https://doi.org/10.1103/PhysRevB.80.193202
  30. H. G. Park and J. Yi, J. Korean Inst. Electr. Electron. Mater. Eng., 37, 439 (2024). doi: https://doi.org/10.4313/JKEM.2024.37.4.12