과제정보
본 연구는 2022년 과학기술정보통신부 재원으로 한국연구재단의 지원(2022R1A2C4002037, 2022R1A4A3032923) 및 과학기술사업화진흥원의 지원(RS-2023-00304743)을 받아 수행된 결과입니다.
참고문헌
- J. F. Tressler, S. Alkoy, and R. E. Newnham, J. Electroceram., 2, 257 (1998). doi: https://doi.org/10.1023/A:1009926623551
- T. T. Zate, J. W. Sun, N. R. Ko, H. L. Yu, W. J. Choi, J. H. Jeon, and W. Jo, J. Korean Inst. Electr. Electron. Mater. Eng., 36, 341 (2023). doi: https://doi.org/https://doi.org/10.4313/JKEM.2023.36.4.4
- S. Im, S. Y. Cho, J. H. Cho, G. T. Hwang, A. I. Kingon, S. D. Bu, W. Jo, S. H. Kim, and C. K. Jeong, Appl. Surf. Sci., 613, 156031 (2023). doi: https://doi.org/10.1016/j.apsusc.2022.156031
- A. Erturk and D. J. Inman, Piezoelectric Energy Harvesting (John Wiley & Sons, Ltd, Chichester, UK, 2011) p. 1.
- H. Jaffe, J. Am. Ceram. Soc., 41, 494 (1958). doi: https://doi.org/10.1111/j.1151-2916.1958.tb12903.x
- C. Sohn, H. Kim, J. Han, K. T. Lee, A. Sutka, and C. K. Jeong, Nano Energy, 103, 107844 (2022). doi: https://doi.org/10.1016/j.nanoen.2022.107844
- G. J. Lee, H. P. Kim, S. G. Lee, H. Y. Lee, and W. Jo, J. Sens. Sci. Technol., 29, 59 (2020). doi: https://doi.org/10.5369/JSST.2019.29.1.59
- Y. Zhang, W. Jie, P. Chen, W. Liu, and J. Hao, Adv. Mater., 30, 1707007 (2018). doi: https://doi.org/10.1002/adma.201707007
- K. Uchino, Piezoelectric Composite Materials, Advanced Piezoelectric Materials (2nd Edition), Woodhead Publishing (2017) p. 353.
- X. Gao, J. Yang, J. Wu, X. Xin, Z. Li, X. Yuan, X. Shen, and S. Dong, Adv. Mater. Technol., 5, 1900716 (2020). doi: https://doi.org/10.1002/admt.201900716
- H. S. Kim, J. H. Kim, and J. Kim, Int. J. Precis. Eng. Manuf., 12, 1129 (2011). doi: https://doi.org/10.1007/s12541-011-0151-3
- H. Jaffe and D. A. Berlincourt, Proc. IEEE, 53, 1372 (1965). doi: https://doi.org/10.1109/PROC.1965.4253
- Y. H. Jung, J. An, D. Y. Hyeon, H. S. Wang, I. Kim, C. K. Jeong, K. I. Park, P. S. Lee, and K. J. Lee, Adv. Funct. Mater., 34, 2309316 (2024). doi: https://doi.org/10.1002/adfm.202309316
- Y. Sun, T. Karaki, and Y. Yamashita, Jpn. J. Appl. Phys., 61, SB0802 (2022). doi: https://doi.org/10.35848/1347-4065/ac3a90
- S. C. Park, J. H. Lee, Y. G. Kim, and K. I. Park, J. Korean Inst. Electr. Electron. Mater. Eng., 35, 72 (2022). doi: https://doi.org/https://doi.org/10.4313/JKEM.2022.35.1.11
- B. R. Tittmann, D. A. Parks, and S.J.O. Zhang, 13th International Symposium on Nondestructive Characterization of Materials (NDCM-XIII) (Le Mans, France, 2013) p. 1.
- Q. Guo, G. Z. Cao, and I. Y. Shen, J. Vib. Acoust., 135, 011003 (2013). doi: https://doi.org/10.1115/1.4006881
- Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, Nature, 432, 84 (2004). doi: https://doi.org/10.1038/nature03028
- H. Yang, Y. Sun, H. Gao, X. Zhou, H. Tan, C. Shu, D. Salamon, S. Guan, S. Chen, and H. Zhang, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 69, 3102 (2022). doi: https://doi.org/10.1109/TUFFC.2022.3143575
- H. R. Cho, M. H. Lee, D. J. Kim, H. I. Choi, W. J. Kim, S. S. Jeong, and T. K. Song, New Phys.: Sae Mulli, 71, 230 (2021). doi: https://doi.org/10.3938/NPSM.71.230
- K. K. Sappati and S. Bhadra, Sensors, 18, 3605 (2018). doi: https://doi.org/10.3390/s18113605
- Y. Liu, Z. Han, W. Xu, A. Haibibu, and Q. Wang, Macromolecules, 52, 6741 (2019). doi: https://doi.org/10.1021/acs.macromol.9b01403
- J. Ricote, R. W. Whatmore, and D. J. Barber, J. Phys.: Condens. Matter, 12, 323 (2000). doi: https://doi.org/10.1088/0953-8984/12/3/311
- Y. Xu, Other Ferroelectric Crystal Materials, Ferroelectric Materials and Their Applications, Elsevier (2013) p. 301.
- H. Kim, G. J. Lee, Y. Ogawa, Y. Lee, M. K. Lee, C. Baek, and C. K. Jeong, Trans. Electr. Electron. Mater., 25, 15 (2024). doi: https://doi.org/10.1007/s42341-023-00500-5
- T. Granzow, A. B. Kounga, E. Aulbach, and J. Rodel, Appl. Phys. Lett., 88, 252907 (2006). doi: https://doi.org/10.1063/1.2216028
- S. S. Dani, A. Tripathy, N. R. Alluri, S. Balasubramaniam, and A. Ramadoss, Mater. Adv., 3, 8886 (2022). doi: https://doi.org/10.1039/D2MA00559J
- H. P. Kim, H. Wan, C. Luo, Y. Sun, Y. Yamashita, T. Karaki, H. Y. Lee, and X. Jiang, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 69, 3037 (2022). doi: https://doi.org/10.1109/TUFFC.2022.3181236
- H. P. Kim, H. Wan, X. Lu, Y. Yamashita, and X. Jiang, Appl. Phys. Lett., 120, 142901 (2022). doi: https://doi.org/10.1063/5.0084994
- C. Luo, T. Karaki, Z. Wang, Y. Sun, Y. Yamashita, and J. Xu, J. Adv. Ceram., 11, 57 (2022). doi: https://doi.org/10.1007/s40145-021-0490-1
- S. Park, C. W. Ahn, J. W. Lee, and Y. Min, Ceramist, 24, 130 (2021). doi: https://doi.org/10.31613/ceramist.2021.24.2.02
- M. Ma, S. Xia, X. Gao, K. Song, H. Guo, F. Li, Z. Xu, and Z. Li, Appl. Phys. Lett., 120, 042902 (2022). doi: https://doi.org/10.1063/5.0078609
- J. Liu, C. Qiu, L. Qiao, K. Song, H. Guo, Z. Xu, and F. Li, J. Appl. Phys., 128, 094104 (2020). doi: https://doi.org/10.1063/5.0020109
- L. Guo, B. Su, C. Wang, X. He, Z. Wang, X. Yang, X. Long, and C. He, J. Appl. Phys., 127, 184104 (2020). doi: https://doi.org/10.1063/5.0002672
- J. Xiong, Z. Wang, X. Yang, R. Su, X. Long, and C. He, RSC Adv., 11, 12826 (2021). doi: https://doi.org/10.1039/D0RA10234B
- G. T. Hwang, H. Park, J. H. Lee, S. K. Oh, K. I. Park, M. Byun, H. Park, G. Ahn, C. K. Jeong, K. No, H. S. Kwon, S. G. Lee, B. Joung, and K. J. Lee, Adv. Mater., 26, 4880 (2014). doi: https://doi.org/10.1002/adma.201400562
- H. Wan, C. Luo, W. Y. Chang, Y. Yamashita, and X. Jiang, Appl. Phys. Lett., 114, 172901 (2019). doi: https://doi.org/10.1063/1.5094362
- Z. Zhang, J. Xu, L. Yang, S. Liu, J. Xiao, R. Zhu, X. Li, X. Wang, and H. Luo, J. Appl. Phys., 125, 034104 (2019). doi: https://doi.org/10.1063/1.5052709
- C. Luo, H. Wan, W. Y. Chang, Y. Yamashita, A. R. Paterson, J. Jones, and X. Jiang, Appl. Phys. Lett., 115, 192904 (2019). doi: https://doi.org/10.1063/1.5127292
- J. Lv, X. Lou, and J. Wu, J. Mater. Chem. C, 4, 6140 (2016). doi: https://doi.org/10.1039/C6TC01629D
- K. Matsumoto and P. Mele, Supercond. Sci. Technol., 23, 014001 (2010). doi: https://doi.org/10.1088/0953-2048/23/1/014001
- M. H. Garrett, J. Y. Chang, H. P. Jenssen, and C. Warde, Ferroelectrics, 120, 167 (1991). doi: https://doi.org/10.1080/00150199108008240
- T. R. Shrout and S. J. Zhang, J. Electroceram., 19, 113 (2007). doi: https://doi.org/10.1007/s10832-007-9047-0
- A. T. Shibiru, I. Fujii, H. Nam, P. Sapkota, G. P. Khanal, Z. Wang, S. Ueno, and S. Wada, J. Ceram. Soc. Jpn., 132, 346 (2024). doi: https://doi.org/10.2109/jcersj2.23218
- H. Y. Shin, H. Y. Lee, I. G. Hong, J. H. Kim, and J. I. Im, J. Korean Inst. Electr. Electron. Mater. Eng., 35, 471 (2022). doi: https://doi.org/https://doi.org/10.4313/JKEM.2022.35.5.8
- N. Horchidan, C. E. Ciomaga, R. C. Frunza, C. Capiani, C. Galassi, and L. Mitoseriu, Ceram. Int., 42, 9125 (2016). doi: https://doi.org/10.1016/j.ceramint.2016.02.179
- A. J. Masys, W. Ren, G. Yang, and B. K. Mukherjee, J. Appl. Phys., 94, 1155 (2003). doi: https://doi.org/10.1063/1.1587008
- H. Wang, S. Xia, M. Ma, and Z. Li, J. Am. Ceram. Soc., 105, 3238 (2022). doi: https://doi.org/10.1111/jace.18336
- J. Ma, K. Zhu, D. Huo, X. Qi, E. Sun, and R. Zhang, Appl. Phys. Lett., 118, 022901 (2021). doi: https://doi.org/10.1063/5.0035153
- H. Tao and J. Wu, J. Mater. Chem. C, 5, 1601 (2017). doi: https://doi.org/10.1039/C6TC05328A
- Y. P. Jiang, T. C. Yang, T. H. Lin, C. M. Ho, S. H. Chan, M. C. Wu, and J. C. Wang, Polymer, 204, 122822 (2020). doi: https://doi.org/10.1016/j.polymer.2020.122822
- N. Jia, Q. He, J. Sun, G. Xia, and R. Song, Polym. Test., 57, 302 (2017). doi: https://doi.org/10.1016/j.polymertesting.2016.12.003
- S. Im, S. D. Bu, and C. K. Jeong, J. Korean Inst. Electr. Electron. Mater. Eng., 35, 523 (2022). doi: https://doi.org/https://doi.org/10.4313/JKEM.2022.35.6.1
- S. J. Yoon, H. Kim, C. K. Jeong, and Y. K. Lee, J. Korean Ceram. Soc., 61, 429 (2024). doi: https://doi.org/10.1007/s43207-024-00369-x
- D. Zhao, I. Katsouras, M. Li, K. Asadi, J. Tsurumi, G. Glasser, J. Takeya, P.W.M. Blom, and D. M. de Leeuw, Sci. Rep., 4, 5075 (2014). doi: https://doi.org/10.1038/srep05075