DOI QR코드

DOI QR Code

강유전체 압전 재료에서의 직류 및 교류 폴링 효과 비교 대조 탐구

Quest for Comparing Direct-Current (DC) and Alternating-Current (AC) Poling Effects on Ferroelectric and Piezoelectric Materials

  • 최지훈 (전북대학교 신소재공학부 전자재료공학전공) ;
  • 김현승 (전북대학교 신소재공학부 전자재료공학전공) ;
  • 윤상일 (전북대학교 신소재공학부 전자재료공학전공) ;
  • 정창규 (전북대학교 신소재공학부 전자재료공학전공)
  • Jihun Choi (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Hyunseung Kim (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Sang-il Yoon (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Chang Kyu Jeong (Division of Advanced Materials Engineering, Jeonbuk National University)
  • 투고 : 2024.09.05
  • 심사 : 2024.09.19
  • 발행 : 2024.11.01

초록

Piezoelectricity refers to the phenomenon where mechanical stress is converted into electrical signals or, conversely, electrical signals are converted into mechanical stress. Ferroelectric materials, characterized by high dielectric permittivity and spontaneous polarization, retain their polarization even after the removal of an electric field. In such materials, poling plays a crucial role in enhancing the piezoelectric effect, with the process of aligning dipoles being known as poling. This review focuses on studies that have compared and analyzed the enhancement of piezoelectric properties in ceramics and polymers through two representative poling methods: AC poling (ACP) and DC poling (DCP). Even within the same category of ceramics or polymers, variations in piezoelectric properties are observed based on the material type, poling method, and poling conditions. Under certain conditions, ACP has been shown to provide superior poling effects compared to DCP. Through this review, we propose that ACP has the potential not only to replace the traditionally used DCP in the poling of piezoelectric materials but also to serve as a more effective method. This could spark increased interest in the study of poling methods for piezoelectric polymers, a field that has received relatively less attention.

키워드

과제정보

본 연구는 2022년 과학기술정보통신부 재원으로 한국연구재단의 지원(2022R1A2C4002037, 2022R1A4A3032923) 및 과학기술사업화진흥원의 지원(RS-2023-00304743)을 받아 수행된 결과입니다.

참고문헌

  1. J. F. Tressler, S. Alkoy, and R. E. Newnham, J. Electroceram., 2, 257 (1998). doi: https://doi.org/10.1023/A:1009926623551
  2. T. T. Zate, J. W. Sun, N. R. Ko, H. L. Yu, W. J. Choi, J. H. Jeon, and W. Jo, J. Korean Inst. Electr. Electron. Mater. Eng., 36, 341 (2023). doi: https://doi.org/https://doi.org/10.4313/JKEM.2023.36.4.4
  3. S. Im, S. Y. Cho, J. H. Cho, G. T. Hwang, A. I. Kingon, S. D. Bu, W. Jo, S. H. Kim, and C. K. Jeong, Appl. Surf. Sci., 613, 156031 (2023). doi: https://doi.org/10.1016/j.apsusc.2022.156031
  4. A. Erturk and D. J. Inman, Piezoelectric Energy Harvesting (John Wiley & Sons, Ltd, Chichester, UK, 2011) p. 1.
  5. H. Jaffe, J. Am. Ceram. Soc., 41, 494 (1958). doi: https://doi.org/10.1111/j.1151-2916.1958.tb12903.x
  6. C. Sohn, H. Kim, J. Han, K. T. Lee, A. Sutka, and C. K. Jeong, Nano Energy, 103, 107844 (2022). doi: https://doi.org/10.1016/j.nanoen.2022.107844
  7. G. J. Lee, H. P. Kim, S. G. Lee, H. Y. Lee, and W. Jo, J. Sens. Sci. Technol., 29, 59 (2020). doi: https://doi.org/10.5369/JSST.2019.29.1.59
  8. Y. Zhang, W. Jie, P. Chen, W. Liu, and J. Hao, Adv. Mater., 30, 1707007 (2018). doi: https://doi.org/10.1002/adma.201707007
  9. K. Uchino, Piezoelectric Composite Materials, Advanced Piezoelectric Materials (2nd Edition), Woodhead Publishing (2017) p. 353.
  10. X. Gao, J. Yang, J. Wu, X. Xin, Z. Li, X. Yuan, X. Shen, and S. Dong, Adv. Mater. Technol., 5, 1900716 (2020). doi: https://doi.org/10.1002/admt.201900716
  11. H. S. Kim, J. H. Kim, and J. Kim, Int. J. Precis. Eng. Manuf., 12, 1129 (2011). doi: https://doi.org/10.1007/s12541-011-0151-3
  12. H. Jaffe and D. A. Berlincourt, Proc. IEEE, 53, 1372 (1965). doi: https://doi.org/10.1109/PROC.1965.4253
  13. Y. H. Jung, J. An, D. Y. Hyeon, H. S. Wang, I. Kim, C. K. Jeong, K. I. Park, P. S. Lee, and K. J. Lee, Adv. Funct. Mater., 34, 2309316 (2024). doi: https://doi.org/10.1002/adfm.202309316
  14. Y. Sun, T. Karaki, and Y. Yamashita, Jpn. J. Appl. Phys., 61, SB0802 (2022). doi: https://doi.org/10.35848/1347-4065/ac3a90
  15. S. C. Park, J. H. Lee, Y. G. Kim, and K. I. Park, J. Korean Inst. Electr. Electron. Mater. Eng., 35, 72 (2022). doi: https://doi.org/https://doi.org/10.4313/JKEM.2022.35.1.11
  16. B. R. Tittmann, D. A. Parks, and S.J.O. Zhang, 13th International Symposium on Nondestructive Characterization of Materials (NDCM-XIII) (Le Mans, France, 2013) p. 1.
  17. Q. Guo, G. Z. Cao, and I. Y. Shen, J. Vib. Acoust., 135, 011003 (2013). doi: https://doi.org/10.1115/1.4006881
  18. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, Nature, 432, 84 (2004). doi: https://doi.org/10.1038/nature03028
  19. H. Yang, Y. Sun, H. Gao, X. Zhou, H. Tan, C. Shu, D. Salamon, S. Guan, S. Chen, and H. Zhang, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 69, 3102 (2022). doi: https://doi.org/10.1109/TUFFC.2022.3143575
  20. H. R. Cho, M. H. Lee, D. J. Kim, H. I. Choi, W. J. Kim, S. S. Jeong, and T. K. Song, New Phys.: Sae Mulli, 71, 230 (2021). doi: https://doi.org/10.3938/NPSM.71.230
  21. K. K. Sappati and S. Bhadra, Sensors, 18, 3605 (2018). doi: https://doi.org/10.3390/s18113605
  22. Y. Liu, Z. Han, W. Xu, A. Haibibu, and Q. Wang, Macromolecules, 52, 6741 (2019). doi: https://doi.org/10.1021/acs.macromol.9b01403
  23. J. Ricote, R. W. Whatmore, and D. J. Barber, J. Phys.: Condens. Matter, 12, 323 (2000). doi: https://doi.org/10.1088/0953-8984/12/3/311
  24. Y. Xu, Other Ferroelectric Crystal Materials, Ferroelectric Materials and Their Applications, Elsevier (2013) p. 301.
  25. H. Kim, G. J. Lee, Y. Ogawa, Y. Lee, M. K. Lee, C. Baek, and C. K. Jeong, Trans. Electr. Electron. Mater., 25, 15 (2024). doi: https://doi.org/10.1007/s42341-023-00500-5
  26. T. Granzow, A. B. Kounga, E. Aulbach, and J. Rodel, Appl. Phys. Lett., 88, 252907 (2006). doi: https://doi.org/10.1063/1.2216028
  27. S. S. Dani, A. Tripathy, N. R. Alluri, S. Balasubramaniam, and A. Ramadoss, Mater. Adv., 3, 8886 (2022). doi: https://doi.org/10.1039/D2MA00559J
  28. H. P. Kim, H. Wan, C. Luo, Y. Sun, Y. Yamashita, T. Karaki, H. Y. Lee, and X. Jiang, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 69, 3037 (2022). doi: https://doi.org/10.1109/TUFFC.2022.3181236
  29. H. P. Kim, H. Wan, X. Lu, Y. Yamashita, and X. Jiang, Appl. Phys. Lett., 120, 142901 (2022). doi: https://doi.org/10.1063/5.0084994
  30. C. Luo, T. Karaki, Z. Wang, Y. Sun, Y. Yamashita, and J. Xu, J. Adv. Ceram., 11, 57 (2022). doi: https://doi.org/10.1007/s40145-021-0490-1
  31. S. Park, C. W. Ahn, J. W. Lee, and Y. Min, Ceramist, 24, 130 (2021). doi: https://doi.org/10.31613/ceramist.2021.24.2.02
  32. M. Ma, S. Xia, X. Gao, K. Song, H. Guo, F. Li, Z. Xu, and Z. Li, Appl. Phys. Lett., 120, 042902 (2022). doi: https://doi.org/10.1063/5.0078609
  33. J. Liu, C. Qiu, L. Qiao, K. Song, H. Guo, Z. Xu, and F. Li, J. Appl. Phys., 128, 094104 (2020). doi: https://doi.org/10.1063/5.0020109
  34. L. Guo, B. Su, C. Wang, X. He, Z. Wang, X. Yang, X. Long, and C. He, J. Appl. Phys., 127, 184104 (2020). doi: https://doi.org/10.1063/5.0002672
  35. J. Xiong, Z. Wang, X. Yang, R. Su, X. Long, and C. He, RSC Adv., 11, 12826 (2021). doi: https://doi.org/10.1039/D0RA10234B
  36. G. T. Hwang, H. Park, J. H. Lee, S. K. Oh, K. I. Park, M. Byun, H. Park, G. Ahn, C. K. Jeong, K. No, H. S. Kwon, S. G. Lee, B. Joung, and K. J. Lee, Adv. Mater., 26, 4880 (2014). doi: https://doi.org/10.1002/adma.201400562
  37. H. Wan, C. Luo, W. Y. Chang, Y. Yamashita, and X. Jiang, Appl. Phys. Lett., 114, 172901 (2019). doi: https://doi.org/10.1063/1.5094362
  38. Z. Zhang, J. Xu, L. Yang, S. Liu, J. Xiao, R. Zhu, X. Li, X. Wang, and H. Luo, J. Appl. Phys., 125, 034104 (2019). doi: https://doi.org/10.1063/1.5052709
  39. C. Luo, H. Wan, W. Y. Chang, Y. Yamashita, A. R. Paterson, J. Jones, and X. Jiang, Appl. Phys. Lett., 115, 192904 (2019). doi: https://doi.org/10.1063/1.5127292
  40. J. Lv, X. Lou, and J. Wu, J. Mater. Chem. C, 4, 6140 (2016). doi: https://doi.org/10.1039/C6TC01629D
  41. K. Matsumoto and P. Mele, Supercond. Sci. Technol., 23, 014001 (2010). doi: https://doi.org/10.1088/0953-2048/23/1/014001
  42. M. H. Garrett, J. Y. Chang, H. P. Jenssen, and C. Warde, Ferroelectrics, 120, 167 (1991). doi: https://doi.org/10.1080/00150199108008240
  43. T. R. Shrout and S. J. Zhang, J. Electroceram., 19, 113 (2007). doi: https://doi.org/10.1007/s10832-007-9047-0
  44. A. T. Shibiru, I. Fujii, H. Nam, P. Sapkota, G. P. Khanal, Z. Wang, S. Ueno, and S. Wada, J. Ceram. Soc. Jpn., 132, 346 (2024). doi: https://doi.org/10.2109/jcersj2.23218
  45. H. Y. Shin, H. Y. Lee, I. G. Hong, J. H. Kim, and J. I. Im, J. Korean Inst. Electr. Electron. Mater. Eng., 35, 471 (2022). doi: https://doi.org/https://doi.org/10.4313/JKEM.2022.35.5.8
  46. N. Horchidan, C. E. Ciomaga, R. C. Frunza, C. Capiani, C. Galassi, and L. Mitoseriu, Ceram. Int., 42, 9125 (2016). doi: https://doi.org/10.1016/j.ceramint.2016.02.179
  47. A. J. Masys, W. Ren, G. Yang, and B. K. Mukherjee, J. Appl. Phys., 94, 1155 (2003). doi: https://doi.org/10.1063/1.1587008
  48. H. Wang, S. Xia, M. Ma, and Z. Li, J. Am. Ceram. Soc., 105, 3238 (2022). doi: https://doi.org/10.1111/jace.18336
  49. J. Ma, K. Zhu, D. Huo, X. Qi, E. Sun, and R. Zhang, Appl. Phys. Lett., 118, 022901 (2021). doi: https://doi.org/10.1063/5.0035153
  50. H. Tao and J. Wu, J. Mater. Chem. C, 5, 1601 (2017). doi: https://doi.org/10.1039/C6TC05328A
  51. Y. P. Jiang, T. C. Yang, T. H. Lin, C. M. Ho, S. H. Chan, M. C. Wu, and J. C. Wang, Polymer, 204, 122822 (2020). doi: https://doi.org/10.1016/j.polymer.2020.122822
  52. N. Jia, Q. He, J. Sun, G. Xia, and R. Song, Polym. Test., 57, 302 (2017). doi: https://doi.org/10.1016/j.polymertesting.2016.12.003
  53. S. Im, S. D. Bu, and C. K. Jeong, J. Korean Inst. Electr. Electron. Mater. Eng., 35, 523 (2022). doi: https://doi.org/https://doi.org/10.4313/JKEM.2022.35.6.1
  54. S. J. Yoon, H. Kim, C. K. Jeong, and Y. K. Lee, J. Korean Ceram. Soc., 61, 429 (2024). doi: https://doi.org/10.1007/s43207-024-00369-x
  55. D. Zhao, I. Katsouras, M. Li, K. Asadi, J. Tsurumi, G. Glasser, J. Takeya, P.W.M. Blom, and D. M. de Leeuw, Sci. Rep., 4, 5075 (2014). doi: https://doi.org/10.1038/srep05075