DOI QR코드

DOI QR Code

Analyzing the Impact of Smart Window Tinting on Human Thermal and Visual Comfort in Summer Using Measurements and Surveys

계측 및 설문을 통한 스마트 윈도우 변색이 하계 인체 열·빛쾌적에 미치는 영향 분석

  • Choi, Sue-Young (Dept. of Architectural Urban System Engineering, Ewha Womans University) ;
  • Lee, Soo-Jin (Dept. of Architectural Urban System Engineering, Ewha Womans University) ;
  • Song, Seung-Yeong (Dept. of Architectural Urban System Engineering, Ewha Womans University)
  • 최수영 (이화여대 건축도시시스템공학과 ) ;
  • 이수진 (이화여대 건축공학과 ) ;
  • 송승영 (이화여대 건축공학과 )
  • Received : 2024.07.16
  • Accepted : 2024.08.27
  • Published : 2024.10.30

Abstract

This study analyzed the impact of smart window tinting on thermal and visual comfort during summer based on experimental data. Smart windows were installed in an apartment building, and experiments were conducted in July and August 2023. Sixteen participants completed surveys every 10 minutes during the tests. The thermal comfort survey (TSV) assessed occupants' thermal sensations using the same scale as the predicted mean vote (PMV). The visual comfort survey measured brightness perception and satisfaction on a 7-point scale. Participants stayed in a test room equipped with either a smart window or a normal window. The thermal comfort experiments included two cases: T1 with an initial setup of 26℃ and T2 with an initial setup of 30℃. The visual comfort experiments included Case V1 on an overcast day and Case V2 on a sunny day. The thermal comfort experiments showed that dry-bulb temperature, globe temperature, PMV, and TSV increased less in the smart window room, indicating that occupants felt cooler both objectively and subjectively when the smart windows were tinted. In the visual comfort experiments, the smart window room did not experience glare, but it failed to meet the minimum illuminance level. Additionally, occupants' brightness perception and satisfaction were lower compared to the room with normal windows.

Keywords

Acknowledgement

이 연구는 2023년도 한국연구재단 연구비 지원에 의한 결과의 일부임. 과제번호:RS-2023-00210963

References

  1. Alfano, F. R., Ianniello, E., & Palella, B. I. (2013). PMV-PPD and acceptability in naturally ventilated schools, Building and Environment, Volume 67, 129-137. https://doi.org/10.1016/j.buildenv.2013.05.013
  2. American Society of Heating, Refrigerating and Air-Conditioning Engineers. (2020). Thermal Environmental Conditions for Human Occupancy (ANSI/ASHRAE Standard 55)
  3. Broday, E. E., Moreto, J. A., Xavier, A. A. P., & Oliveira, R. (2019). The approximation between thermal sensation votes (TSV) and predicted mean vote (PMV): A comparative analysis, International Journal of Industrial Ergonomics, Volume 69, 1-8. https://doi.org/10.1016/j.ergon.2018.09.007
  4. Choi, S. Y. (2023, October 25-27). Analysis of the effect of smart window tinting on human thermal comfort in summer through PMV measurement and subjective thermal sensation survey. [Paper presentation], AIK 2023: Fall Conference, Jeongseon, South Korea.
  5. Fanger, P. O. (1970). Thermal Comfort: Analysis and Applications in Environmental Engineering. 1st ed., Denmark, Danish Technical Press, 1-244.
  6. Fanger, P. O., Toftum, J. (2002). Extension of the PMV model to non-air-conditioned buildings in warm climates. Energy and buildings, 34(6), 533-536. https://doi.org/10.1016/S0378-7788(02)00003-8
  7. Ghosh, A., Norton, B., & Duffy, A. (2016). Behaviour of a SPD switchable glazing in an outdoor test cell with heat removal under varying weather conditions, Applied Energy, Volume 180, 695-706. https://doi.org/10.1016/j.apenergy.2016.08.029
  8. Gilani, S. I. H., Khan, M. H., & Pao, W. (2015). Thermal Comfort Analysis of PMV Model Prediction in Air Conditioned and Naturally Ventilated Buildings, Energy Procedia, Volume 75, 1373-1379. https://doi.org/10.1016/j.egypro.2015.07.218
  9. Grynning, S., Time, B., & Uvslokk, S. (2011). An overview and some reflections on energy saving potentials by heat loss reduction through the building envelope. Project report., Norway, Research Centre on Zero Emission Buildings.
  10. Haiying, W., Guodan, L., Songtao, H., & Chao, L. (2018). Experimental investigation about thermal effect of colour on thermal sensation and comfort, Energy and Buildings, Volume 173, 710~718. https://doi.org/10.1016/j.enbuild.2018.06.008
  11. Hopkinson, R. G. (1963). Architectural Physics: Lighting, HMSO, London, 225-242.
  12. International Organization for Standardization. (2005). Ergonomics of the thermal environment(ISO 7730).
  13. Johannes, I.. (1970). The Elements of Color. 1st ed., Canada, John Wiley & Sons, Inc.
  14. Kim, J. T., Lim, J. H., Cho, S. H., & Yun, G. Y. (2015). Development of the adaptive PMV model for improving prediction performances, Energy and Buildings, Volume 98, 100-105. https://doi.org/10.1016/j.enbuild.2014.08.051
  15. Ko, W. H., Schiavon, Zhang, H., Graham, L. T., Brager, G., Mauss, I., & Lin, Y. W. (2020). The impact of a view from a window on thermal comfort, emotion, and cognitive performance, Building and Environment, Volume 175, 106779.
  16. Lantonio, N., Krarti, M. (2022)., Simultaneous design and control optimization of smart glazed windows, Applied Energy, Volume 328, 120239.
  17. Leather, P., Pyrgas, M., Beale, D., & Lawrence, C. (1998). Windows in the Workplace: Sunlight, View, and Occupational Stress. Environment and Behavior, 30(6), 739-762. https://doi.org/10.1177/001391659803000601
  18. Lee, S. J., & Song, S. Y. (2023). Evaluation of Visual Comfort and Lighting Energy in a Residential Building Equipped with Suspended Particle Device Smart Window Based on In-situ Measurement, Journal of the Architectural Institute of Korea, 39(5), 147-156. https://doi.org/10.5659/JAIK.2023.39.5.147
  19. Liu, H., Wu, Y., Li, B., Cheng, Y., & Yao, R. (2017). Seasonal variation of thermal sensations in residential buildings in the Hot Summer and Cold Winter zone of China, Energy and Buildings, Volume 140, 9-18. https://doi.org/10.1016/j.enbuild.2017.01.066
  20. Masi, R. F. D., Festa, V., Gigante, A., Ruggiero, S., & Vanoli, G. p. (2022). The incidence of smart windows in building energy saving and future climate projections, Energy Reports, Volume 8, Supplement 16, 283-289. https://doi.org/10.1016/j.egyr.2022.10.222
  21. Min, J., Hong, H. (2018). Study on the energy performance evaluation of a smart skin for reducing cooling load of building envelope in office building. Korean Journal of Air-Conditioning and Refrigeration Engineering, Vol. 30, No. 11, 546-557. https://doi.org/10.6110/KJACR.2018.30.11.546
  22. Nazzal, A. A. (2005). A new evaluation method for daylight discomfort glare. International Journal of Industrial Ergonomics, 35(4), 295-306. https://doi.org/10.1016/j.ergon.2004.08.010
  23. Yun, H. J., Nam, I. S., Kim, J. M., Yang, J. H., Lee, K. H., & Sohn, J. R. (2014). A field study of thermal comfort for kindergarten children in Korea: An assessment of existing models and preferences of children, Building and Environment, Volume 75, 182-189. https://doi.org/10.1016/j.buildenv.2014.02.003