참고문헌
- Akbas, S.D. (2018), "Forced vibration analysis of functionally graded porous deep beams", Compos. Struct., 186, 293-302. https://doi.org/10.1016/j.compstruct.2017.12.013.
- Akbas, S.D. (2021), "Forced vibration responses of axially functionally graded beams by using Ritz Method", J. Appl. Comput. Mech., 7(1), 109-115. https://doi.org/10.22055/JACM.2020.34865.2491.
- Akbas, S.D., Bashiri, A.H., Assie, A.E. and Eltaher, M.A. (2021), "Dynamic analysis of thick beams with functionally graded porous layers and viscoelastic support", J. Vib. Control, 27(13-14), 1644-1655. https://doi.org/10.1177/1077546320947302.
- Alimoradzadeh, M. and Akbas, S.D. (2022), "Nonlinear thermal vibration of FGM beams resting on nonlinear viscoelastic foundation", Steel Compos. Struct., 44(4), 543-553. https://doi.org/10.12989/scs.2022.44.4.543.
- Alimoradzadeh, M., Salehi, M. and Esfarjani, S.M. (2019), "Nonlinear dynamic response of an Axially Functionally Graded (AFG) beam resting on nonlinear elastic foundation subjected to moving load", Nonlin. Eng., 8(1), 250-260. https://doi.org/10.1515/nleng-2018-0051.
- Al-Osta, M.A. (2022), "Wave propagation investigation of a porous sandwich FG plate under hygrothermal environments via a new first-order shear deformation theory", Steel Compos. Struct., 43(1), 117-127. https://doi.org/10.12989/scs.2022.43.1.117.
- Ansari, R., Ershadi, M.Z., Laskoukalayeh, H.A., Oskouie, M.F. and Rouhi, H. (2023), "Hygrothermally-induced vibration analysis of porous FGM rectangular mindlin plates resting on elastic foundation", Int. J. Struct. Stab. Dyn., 24(09), 2450100. https://doi.org/10.1142/S0219455424501001.
- Assie, A.E., Mohamed, S.A., Abo-bakr, R.M., Mohamed, N. and Eltaher, M.A. (2024), "Neutral surface effect on nonlinear response of BDFG porous higher order plate rested on elastic foundations", Acta Mechanica, 235(5), 2629-2649. https://doi.org/10.1007/s00707-023-03849-z.
- Bot, I.K., Bousahla, A.A., Zemri, A., Sekkal, M., Kaci, A., Bourada, F., Tounsi, A., Ghazwani, M.H. and Mahmoud, A.S.R. (2022), "Effects of Pasternak foundation on the bending behavior of FG porous plates in hygrothermal environment", Steel Compos. Struct., 43(6), 821-837. https://doi.org/10.12989/scs.2022.43.6.821.
- Chen, S.H. and Cheung, Y.K. (1996), "Modified Lindstedt-Poincare method for a strongly non-linear two degree-of-freedom system", J. Sound Vib., 193(4), 751-762. https://doi.org/10.1006/jsvi.1996.0313.
- Chen, X.C. and Chen, L.T. (2021), "Imperfection sensitivity of nonlinear primary resonance behavior in bi-directional functionally graded porous material beam", Compos. Struct., 27, 114142. https://doi.org/10.1016/j.compstruct.2021.114142.
- Chen, Y., Fu, Y.M., Zhong, J. and Li, Y.L. (2017), "Nonlinear dynamic responses of functionally graded tubes subjected to moving load based on a refined beam model", Nonlin. Dyn., 88(2), 1441-1452. https://doi.org/10.1007/s11071-016-3321-0.
- Chinnapandi, L.B.M., Pitchaimani, J., Eltaher, M.A. and Mohamed A. (2022), "Vibro-acoustics of functionally graded porous beams subjected to thermo-mechanical loads", Steel Compos. Struct., 44(6), 829-843. https://doi.org/10.12989/scs.2022.44.6.815.
- Esen, I., Alazwari, M.A., Almitani, K.H., Eltaher, M.A. and Abdelrahman, A. (2023), "Dynamic vibration response of functionally graded porous nanoplates in thermal and magnetic fields under moving load", Adv. Nano. Res., 14(5), 475. https://doi.org/10.12989/anr.2023.14.5.475.
- Foroutan, K., Carrera, E. and Ahmadi, H. (2021), "Nonlinear hygrothermal vibration and buckling analysis of imperfect FGCNTRC cylindrical panels embedded in viscoelastic foundations", Eur. J. Mech. A-Solid., 85, 104107. https://doi.org/10.1016/j.euromechsol.2020.104107.
- Foroutan, K., Shaterzadeh, A. and Ahmadi, H. (2019), "Nonlinear static and dynamic hygrothermal buckling analysis of imperfect functionally graded porous cylindrical shells", Appl. Math. Model., 77, 539-553. https://doi.org/10.1016/j.apm.2019.07.062.
- Fu, Y.M., Wang, J.Z. and Mao, Y.Q. (2012), "Nonlinear analysis of buckling, free vibration and dynamic stability for the piezoelectric functionally graded beams in thermal environment", Appl. Math. Model., 36(9), 4324-4340. https://doi.org/10.1016/j.apm.2011.11.059.
- Gan, L.L. and She, G.L. (2024a), "Nonlinear low-velocity impact of magneto-electro-elastic plates with initial geometric imperfection", Acta Astronautica, 214, 11-29. https://doi.org/10.1016/j.actaastro.2023.10.016.
- Gan, L.L. and She, G.L. (2024b), "Nonlinear transient response of magneto-electro-elastic cylindrical shells with initial geometric imperfection", Appl. Math. Model., 132, 166-186. https://doi.org/10.1016/j.apm.2024.04.049.
- Guo, L.M., Cai, J.W., Xie, Z.Y. and Li, C. (2024), "Mechanical responses of symmetric straight and curved composite microbeams", J. Vib. Eng. Technol., 12(2), 1537-1549. https://doi.org/10.1007/s42417-023-00924-6.
- Guo, X., Pu, G., Zhang, D.G. and Li, L. (2023), "Dynamic model of functionally graded flexible beams based on neutral axis and setting position", J. Vib. Eng. Technol., 12(1), 979-994. https://doi.org/10.1007/s42417-023-00888-7.
- Jin, H.J., Sui, S.H., Zhu, C.X. and Li, C. (2023), "Axial free vibration of rotating FG piezoelectric nano-rods accounting for nonlocal and strain gradient effects", J. Vib. Eng. Technol., 11(2), 537-549. https://doi.org/10.1007/s42417-022-00592-y.
- Karamanli, A., Eltaher, M.A., Thai, S. and Vo, T.P. (2023), "Transient dynamics of 2D-FG porous microplates under moving loads using higher order finite element model", Eng. Struct., 278, 115566. https://doi.org/10.1016/j.engstruct.2022.115566.
- Lee, C.Y. and Kim, J.H. (2014), "Degradation of thermal postbuckling behaviors of functionally graded material in aero-hygrothermal environments", Compos. Struct., 118, 228-233. https://doi.org/10.1016/j.compstruct.2014.07.055.
- Lee, C.Y. and Kim, J.H. (2015), "Aero-hygrothermal effects on stability regions for functionally graded panels", Compos. Struct., 133, 257-264. https://doi.org/10.1016/j.compstruct.2015.07.085.
- Li, C., Zhu, C.X., Lim, C.W. and Li, S. (2022), "Nonlinear in-plane thermal buckling of rotationally restrained functionally graded carbon nanotube reinforced composite shallow arches under uniform radial loading", Appl. Math Mech., 43(12), 1821-1840. https://doi.org/10.1007/s10483-022-2917-7.
- Li, C., Zhu, C.X., Zhang, N., Sui, S.H. and Zhao, J.B. (2022), "Free vibration of self-powered nanoribbons subjected to thermal-mechanical-electrical fields based on a nonlocal strain gradient theory", Appl. Math Model., 110, 583-602. https://doi.org/10.1016/j.apm.2022.05.044.
- Li, H.N., Wang, W., Lai, S.K., Yao, L.Q. and Li, C. (2024), "Nonlinear vibration and stability analysis of rotating functionally graded piezoelectric nanobeams", Int. J. Struct. Stab. Dyn., 24(9), 2450103. https://doi.org/10.1142/S0219455424501037.
- Li, L., Zhang, D.G. and Zhu, W.D. (2014), "Free vibration analysis of a rotating hub-functionally graded material beam system with the dynamic stiffening effect", J. Sound Vib., 333(5), 1526-1541. https://doi.org/10.1016/j.jsv.2013.11.001.
- Li, X.Q., Song, M.T., Yang, J. and Kitipornchai, S. (2019), "Primary and secondary resonances of functionally graded graphene platelet-reinforced nanocomposite beams", Nonlin. Dyn., 95(3), 1807-1826. https://doi.org/10.1007/s11071-018-4660-9.
- Liu, P.P., Tang, J., Jiang, B.L. and Li, Y.H. (2023), "Nonlinear parametric vibration analysis of the rotating thin-walled functionally graded material hyperbolic beams", Math. Method. Appl. Sci., 47(4), 2952-2965. https://doi.org/10.1002/mma.9787.
- Liu, P.P., Tang, J., Li, Y.H. and Kun, Z. (2024), "Static and dynamic analysis of the postbuckling of axially moving spin beams", Mech. Adv. Mater. Struct., 31(21), 5300-5314. https://doi.org/10.1080/15376494.2023.2214919.
- Lotfan, S., Anamagh, M.R., Bediz, B. and Cigeroglu, E. (2022), "Nonlinear resonances of axially functionally graded beams rotating with varying speed including Coriolis effects", Nonlin. Dyn., 107(1), 533-558. https://doi.org/10.1007/s11071-021-07055-1.
- Machado, S.P. and Piovan, M.T. (2013), "Nonlinear dynamics of rotating box FGM beams using nonlinear normal modes", Thin Wall. Struct., 62, 158-168. https://doi.org/10.1016/j.tws.2012.09.005.
- Maruani, J., Bruant, I., Pablo, F. and Gallimard, L. (2017), "A numerical efficiency study on the active vibration control for a FGPM beam", Compos. Struct., 182, 478-486. https://doi.org/10.1016/j.compstruct.2017.09.036.
- Mohamed, S.A., Assie, A.E. and Eltaher, M.A. (2023), "Novel incremental procedure in solving nonlinear static response of 2D-FG porous plates", Thin Wall. Struct., 189, 110779. https://doi.org/10.1016/j.tws.2023.110779.
- Nesic, N., Cajic, M., Karlicic, D., Obradovic, A. and Simonovic, J. (2022), "Nonlinear vibration of a nonlocal functionally graded beam on fractional Visco-Pasternak foundation", Nonlin. Dyn., 1-24. https://doi.org/10.1007/s11071-021-07081-z.
- Penna, R., Feo, L., Lovisi, G. and Fabbrocino, F. (2022), "Application of the higher-order hamilton approach to the nonlinear free vibrations analysis of Porous FG nano-beams in a hygrothermal environment based on a local/nonlocal stress gradient model of elasticity", Nanomater., 12(12), 2098. https://doi.org/10.3390/nano12122098.
- Penna, R., Lovisi, G. and Feo, L. (2021), "Dynamic response of multilayered polymer Functionally Graded Carbon Nanotube Reinforced Composite (FG-CNTRC) nano-beams in hygrothermal environment", Polym., 13(14), 2340. https://doi.org/10.3390/polym13142340.
- She, G.L. (2021), "Guided wave propagation of porous functionally graded plates: The effect of thermal loadings", J. Therm. Stress., 44(10), 1289-1305. https://doi.org/10.1080/01495739.2021.1974323.
- Shen, H.S. (2015), "Nonlinear analysis of functionally graded fiber reinforced composite laminated beams in hygrothermal environments, Part I: Theory and solutions", Compos. Struct., 125, 698-705. https://doi.org/10.1016/j.compstruct.2014.12.024.
- Shen, H.S. and Yang, D.Q. (2015), "Nonlinear vibration of functionally graded fiber-reinforced composite laminated cylindrical shells in hygrothermal environments", Appl. Math. Model., 39(5-6), 1480-1499. https://doi.org/10.1016/j.apm.2014.09.010.
- Sheng, G.G. and Wang, X. (2018), "Nonlinear vibration of FG beams subjected to parametric and external excitations", Eur. J. Mech. A-Solid., 71, 224-234. https://doi.org/10.1016/j.euromechsol.2018.04.003.
- Simsek, M., Kocaturk, T. and Akbas, S.D. (2012), "Dynamic behavior of an axially functionally graded beam under action of a moving harmonic load", Compos. Struct., 94(8), 2358-2364. https://doi.org/10.1016/j.compstruct.2012.03.020.
- Sobhy, M. and Radwan, A.F. (2023), "Porosity and size effects on electro-hygrothermal bending of FG sandwich piezoelectric cylindrical shells with porous core via a four-variable shell theory", Case Stud. Therm. Eng., 45, 102934. https://doi.org/10.1016/j.csite.2023.102934.
- Song, J.P. and She, G.L. (2024), "Nonlinear resonance and chaotic dynamic of rotating graphene platelets reinforced metal foams plates in thermal environment", Arch. Civil Mech. Eng., 24, 45. https://doi.org/10.1007/s43452-023-00846-w.
- Song, J.P., She, G.L. and Eltaher, M.A. (2024c), "Nonlinear aero-thermo-elastic flutter analysis of stiffened graphene platelets reinforced metal foams plates with initial geometric imperfection", Aerosp. Sci. Technol., 147, 109050. https://doi.org/10.1016/j.ast.2024.109050.
- Song, J.P., She, G.L. and He, Y.J. (2024a), "Nonlinear forced vibration of axially moving functionally graded cylindrical shells under hygro-thermal loads", Geomech. Eng., 36(2), 99-109. https://doi.org/10.12989/gae.2024.36.2.099.
- Song, J.P., She, G.L. and He, Y.J. (2024b), "Nonlinear primary resonance of functionally graded doubly curved shells under different boundary conditions", Steel Compos. Struct., 50(2), 149-158. https://doi.org/10.12989/scs.2024.50.2.149.
- Sui, S.H., Zhu, C.X., Li, C. and Lei, Z.X. (2023), "Free vibration of axially traveling moderately thick FG plates resting on elastic foundations", J. Vib. Eng. Technol., 11, 329-341. https://doi.org/10.1007/s42417-022-00582-0.
- Tang, Y., Lv, X.F. and Yang, T.Z. (2019), "Bi-directional functionally graded beams: Asymmetric modes and nonlinear free vibration", Compos. Part B-Eng., 156, 319-331. https://doi.org/10.1016/j.compositesb.2018.08.140.
- Trinh, L.C., Vo, T.P., Thai, H.T. and Nguyen, T.K. (2016), "An analytical method for the vibration and buckling of functionally graded beams under mechanical and thermal loads", Compos. Part B-Eng., 100, 152-163. https://doi.org/10.1016/j.compositesb.2016.06.067.
- Wang, X., Wang, G., Chen, Z., Lim, C.W., Li, S. and Li, C. (2024), "Controllable flexural wave in laminated metabeam with embedded multiple resonators", J. Sound Vib., 581, 118386. https://doi.org/10.1016/j.jsv.2024.118386.
- Xu, J.Q. and She, G.L. (2023), "Thermal post-buckling and primary resonance of porous functionally graded beams: Effect of elastic foundations and geometric imperfection", Comput. Concrete, 32(6), 543-551. https://doi.org/10.12989/cac.2023.32.6.543.
- Yan, T., Kitipornchai, S., Yang, J. and He, X.Q. (2011), "Dynamic behaviour of edge-cracked shear deformable functionally graded beams on an elastic foundation under a moving load", Compos. Struct., 93(11), 2992-3001. https://doi.org/10.1016/j.compstruct.2011.05.003.
- Zhang, C., Jin, Q., Song, Y., Wang, J., Sun, L., Liu, H., ... & Guo, S. (2021), "Vibration analysis of a sandwich cylindrical shell in hygrothermal environment", Nanotechnol. Rev., 10(1), 414-430. https://doi.org/10.1515/ntrev-2021-0026.
- Zhang, J.H., Chen, L.K. and Lv, Y.L. (2019), "Elastoplastic thermal buckling of functionally graded material beams", Compos. Struct., 224, 111014. https://doi.org/10.1016/j.compstruct.2019.111014.
- Zhang, Y.W. and She, G.L. (2024a), "Combined resonance of graphene platelets reinforced metal foams cylindrical shells with spinning motion under nonlinear forced vibration", Eng. Struct., 300, 117177. https://doi.org/10.1016/j.engstruct.2023.117177.
- Zhang, Y.W. and She, G.L. (2024b), "Nonlinear combined resonance of axially moving conical shells under interaction between transverse and parametric modes", Commun. Nonlin. Sci. Numer. Simul., 131, 107849. https://doi.org/10.1016/j.cnsns.2024.107849.
- Zhang, Y.W. and She, G.L. (2024c), "Investigation on internal resonance of fluid conveying pipes with initial geometric imperfection", Appl. Ocean Res., 146, 103961. https://doi.org/10.1016/j.apor.2024.103961.