DOI QR코드

DOI QR Code

Impact of waste shredded tire inclusion on cement concrete pavement: A Numerical study

  • Amin Hamdi (Civil and Environmental Engineering Department, KingAbdulaziz University) ;
  • Khatib Zada Farhan (Civil and Environmental Engineering Department, KingAbdulaziz University) ;
  • Sohaib Gutub (Civil and Environmental Engineering Department, KingAbdulaziz University)
  • Received : 2022.11.28
  • Accepted : 2024.09.30
  • Published : 2024.10.25

Abstract

Previous research has identified inadequate flexibility in concrete pavements due to the use of high-strength concrete mixtures. This research investigates whether this problem can be addressed by partially replacing some fine and coarse aggregate components with waste rubber from shredded tires, the safe disposal of which otherwise is a major environmental concern. Using finite element software ABAQUS, this study analyses 3D pavement model behavior in terms of internal stress development and deflection at critical load points. This analysis is carried out for concrete slabs of differing waste rubber proportions and varying thicknesses. Results show that the maximum tensile stress is reduced, and maximum deflection is increased as the rubber content in pavement concrete slab is increased. The stresses and deflection of concrete pavement slab are reduced as the thickness of the slab is increased. The influence of increasing the base coarse modulus is significant in terms of reduction in tensile stress development. However, the reduction in deflection is found to be relatively marginal, especially in low-percentage rubberized pavement concrete slabs.

Keywords

Acknowledgement

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under Grant No. G-497-135-1443. The authors, therefore, acknowledge with thanks DSR for technical and financial support

References

  1. Abdel Rahman, A.A., El-Shafei, A.G. and Mahmoud, F.F. (2014), "Nonlinear analysis of viscoelastically layered rolls in steady state rolling contact", Int. J. Appl. Mech., 6(06), 1450065. https://doi.org/10.1142/S1758825114500653.
  2. Abdelrahman, A.A. and El-Shafei, A.G. (2021), "Modeling and analysis of the transient response of viscoelastic solids", Wave. Random Complex Media, 31(6), 1990-2020. https://doi.org/10.1080/17455030.2020.1714790.
  3. Abdelrahman, A.A., El-Shafei, A.G. and Mahmoud, F.F. (2015), "Analysis of steady-state rolling contact problems in nonlinear viscoelastic materials", J. Tribol., 137(3), 031402. https://doi.org/10.1115/1.4029938.
  4. Adamu, M., Mohammed, B.S., Shafiq, N. and Shahir Liew, M. (2018), "Effect of crumb rubber and nano silica on the fatigue performance of roller compacted concrete pavement", Cogent Eng., 5(1), 1436027. https://doi.org/10.1080/23311916.2018.1436027.
  5. Aiello, M.A. and Leuzzi, F. (2010), "Waste tyre rubberized concrete: Properties at fresh and hardened state", Waste Manage., 30(8-9), 1696-1704. https://doi.org/10.1016/j.wasman.2010.02.005.
  6. Alnujaie, A., Akbas, S.D., Eltaher, M.A. and Assie, A. (2021), "Forced vibration of a functionally graded porous beam resting on viscoelastic foundation", Geomech. Eng., 24(1), 91-103. https://doi.org/10.12989/gae.2021.24.1.091.
  7. Alsultan, A.S. (2021), "Smart estimation of automatic approach in enhancing the road safety under AASHTO Standard specification and STM", Struct. Eng. Mech., 79(3), 389-400. https://doi.org/10.12989/sem.2021.79.3.389.
  8. Atahan, A.O. and Yucel, A.O . (2012), "Crumb rubber in concrete: Static and dynamic evaluation", Constr. Build. Mater., 36, 617-622. https://doi.org/10.1016/j.conbuildmat.2012.04.068.
  9. Bravo, M. and de Brito, J. (2012), "Concrete made with used tyre aggregate: Durability-related performance", J. Clean. Prod., 25, 42-50. https://doi.org/10.1016/j.jclepro.2011.11.066.
  10. Deng, D., Wen, S., Lu, K. and Li, L. (2020), "Calculation model for the shear strength of unsaturated soil under nonlinear strength theory", Geomech. Eng., 21(3), 247-258. https://doi.org/10.12989/gae.2020.21.3.247.
  11. Elchalakani, M. (2015), "High strength rubberized concrete containing silica fume for the construction of sustainable road side barriers", Struct., 1, 20-38. https://doi.org/10.1016/j.istruc.2014.06.001.
  12. Eldin, N.N. and Senouci, A.B. (1993), "Rubber-tire particles as concrete aggregate", J. Mater. Civil Eng., 5(4), 478-496. https://doi.org/10.1061/(ASCE)0899-1561(1993)5:4(478).
  13. Elnour, M.G. and Laz, H.A. (2014), "Tire hazardous, disposal and recycling", J. Appl. Indus. Sci., 2(2), 63-74.
  14. Eltaher, M.A. and Mohamed, S.A. (2020), "Buckling and stability analysis of sandwich beams subjected to varying axial loads", Steel Compos. Struct., 34(2), 241-260. https://doi.org/10.12989/scs.2020.34.2.241.
  15. Esen, I., Alazwari, M.A., Eltaher, M.A. and Abdelrahman, A.A. (2022), "Dynamic response of FG porous nanobeams subjected thermal and magnetic fields under moving load", Steel Compos. Struct., 42(6), 805-826. https://doi.org/10.12989/scs.2022.42.6.805.
  16. Farhan, A.H., Dawson, A.R. and Thom, N.H. (2016), "Characterization of rubberized cement bound aggregate mixtures using indirect tensile testing and fractal analysis", Constr. Build. Mater., 105, 94-102. https://doi.org/10.1016/j.conbuildmat.2015.12.018.
  17. Gisbert, A.N., Borrell, J.G., Garcia, F.P., Sanchis, E.J., Amoros, J.C., Alcaraz, J.S. and Vicente, F.S. (2014), "Analysis behaviour of static and dynamic properties of Ethylene-Propylene-Diene-Methylene crumb rubber mortar", Constr. Build. Mater., 50, 671-682. https://doi.org/10.1016/j.conbuildmat.2013.10.018.
  18. Goulias, D.G. and Ali, A.H. (1998), "Evaluation of rubber-filled concrete and correlation between destructive and nondestructive testing results", Cement Concrete Aggregat., 20(1), 140-144. https://doi.org/10.1520/CCA10447J.
  19. Guneyisi, E., Gesoglu, M. and O zturan, T. (2004), "Properties of rubberized concretes containing silica fume", Cement Concrete Res., 34(12), 2309-2317. https://doi.org/10.1016/j.cemconres.2004.04.005.
  20. Gupta, T., Chaudhary, S. and Sharma, R.K. (2016), "Mechanical and durability properties of waste rubber fiber concrete with and without silica fume", J. Clean. Prod., 112, 702-711. https://doi.org/10.1016/j.jclepro.2015.07.081.
  21. Hall, M.R. and Najim, K.B. (2014), "Structural behaviour and durability of steel-reinforced structural Plain/Self-Compacting Rubberised Concrete (PRC/SCRC)", Constr. Build. Mater., 73, 490-497. https://doi.org/10.1016/j.conbuildmat.2014.09.063.
  22. Hamdi, A., Abdelaziz, G. and Farhan, K.Z. (2021), "Scope of reusing waste shredded tires in concrete and cementitious composite materials: A review", J. Build. Eng., 35, 102014. https://doi.org/10.1016/j.jobe.2020.102014.
  23. Hernandez-Olivares, F., Barluenga, G., Parga-Landa, B., Bollati, M. and Witoszek, B. (2007), "Fatigue behaviour of recycled tyre rubber-filled concrete and its implications in the design of rigid pavements", Constr. Build. Mater., 21(10), 1918-1927. https://doi.org/10.1016/j.conbuildmat.2006.06.030.
  24. Huang, B., Li, G., Pang, S.S. and Eggers, J. (2004), "Investigation into waste tire rubber-filled concrete", J. Mater. Civil Eng., 16(3), 187-194. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:3(187).
  25. Khalil, E., Abd-Elmohsen, M. and Anwar, A.M. (2015), "Impact resistance of rubberized self-compacting concrete", Water Sci., 29(1), 45-53. https://doi.org/10.1016/j.wsj.2014.12.002.
  26. Khatib, Z.K. and Bayomy, F.M. (1999), "Rubberized Portland cement concrete", J. Mater. Civil Eng., 11(3), 206-213. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:3(206).
  27. Lee, H.S., Lee, H., Moon, J.S. and Jung, H.W. (1998), "Development of tire added latex concrete", Mater. J., 95(4), 356-364.
  28. Li, G., Stubblefield, M.A., Garrick, G., Eggers, J., Abadie, C. and Huang, B. (2004), "Development of waste tire modified concrete", Cement Concrete Res., 34(12), 2283-2289. https://doi.org/10.1016/j.cemconres.2004.04.013.
  29. Liu, F., Chen, G., Li, L. and Guo, Y. (2012), "Study of impact performance of rubber reinforced concrete", Constr. Build. Mater., 36, 604-616. https://doi.org/10.1016/j.conbuildmat.2012.06.014.
  30. Liu, F., Meng, L.Y., Ning, G.F. and Li, L.J. (2015), "Fatigue performance of rubber-modified recycled aggregate concrete (RRAC) for pavement", Constr. Build. Mater., 95, 207-217. https://doi.org/10.1016/j.conbuildmat.2015.07.042.
  31. Liu, F., Zheng, W., Li, L., Feng, W. and Ning, G. (2013), "Mechanical and fatigue performance of rubber concrete", Constr. Build. Mater., 47, 711-719. https://doi.org/10.1016/j.conbuildmat.2013.05.055.
  32. Malhotra, V.M. (2000), "Role of supplementary cementing materials in reducing greenhouse gas emissions", Concrete Technology for a Sustainable Development in the 21st Century, 5, 6.
  33. Mehta, P.K. (2002), "Greening of the concrete industry for sustainable development", Concrete Int., 24(7), 23-28.
  34. Meyer, C. (2004), "Concrete materials and sustainable development in the USA", Struct. Eng. Int., 14(3), 203-207. https://doi.org/10.2749/101686604777963757.
  35. Moustafa, A. and ElGawady, M.A. (2015), "Mechanical properties of high strength concrete with scrap tire rubber", Constr. Build. Mater., 93, 249-256. https://doi.org/10.1016/j.conbuildmat.2015.05.115.
  36. Naik, T.R. and Singh, S.S. (1991), "Utilization of discarded tires as construction materials for transportation facilities", 70th Annual Meeting of Transportation Research Board, January.
  37. Nor, N.M., Bunnori, N.M., Ibrahim, A., Shahidan, S. and Saliah, S.N.M. (2011), "Relationship between acoustic emission signal strength and damage evaluation of reinforced concrete structure: Case studies", 2011 IEEE Symposium on Industrial Electronics and Applications, 308-313.
  38. Onuaguluchi, O. and Panesar, D.K. (2014), "Hardened properties of concrete mixtures containing pre-coated crumb rubber and silica fume", J. Clean. Prod., 82, 125-131. https://doi.org/10.1016/j.jclepro.2014.06.068.
  39. Resende, F.M., Roitman, N., Magluta, C. and Toledo Filho, R.D. (2003), "Influence of scrap rubber tires and steel fibers on the damping characteristics of normal concrete", Civil Engineering Deparment, COPPE/Federal University of Rio de Janero, Rio de Janero, Brazil.
  40. Sekhar, G.B. (2014), "Tire technology", Proceedings of the Tire Technology Expo, Cologne, Germany.
  41. Senin, M.S., Shahidan, S., Leman, A.S. and Hannan, N.I.R.R. (2016), "Properties of cement mortar containing rubber ash as sand replacement", IOP Conf. Ser.: Mater. Sci. Eng., 160(1), 012055. https://doi.org/10.1088/1757-899X/160/1/012055.
  42. Shatarat, N.K., Katkhuda, H.N., Hyari, K.H. and Asi, I. (2018), "Effect of using recycled coarse aggregate and recycled asphalt pavement on the properties of pervious concrete", Struct. Eng. Mech., 67(3), 283-290. https://doi.org/10.12989/sem.2018.67.3.283.
  43. Shi, Y.P. and Zhou, Y. (2006), Detailed Examples of ABAQUS Finite Element Analysis, China Maching Press, Beijing.
  44. Shu, X. and Huang, B. (2014), "Recycling of waste tire rubber in asphalt and portland cement concrete: An overview", Constr. Build. Mater., 67, 217-224. https://doi.org/10.1016/j.conbuildmat.2013.11.027.
  45. Siddique, R. and Naik, TR. (2004), "Properties of concrete containing scrap-tire rubber-an overview", Waste Manage., 24(6), 563-569. https://doi.org/10.1016/j.wasman.2004.01.006
  46. Skripkiunas, G., Grinys, A. and Miskinis, K. (2009), "Damping properties of concrete with rubber waste additives", Mater. Sci. (Medziagotyra), 15(3), 266-272.
  47. Sobanjo, J.O., Tawfiq, K.S., Twumasi-Boakye, R., Inkoom, S. and Gibbs, S. (2015), "Ground tire rubber (GTR) as a component material in concrete mixtures for paving concrete (No. BDV30 977-08)", Florida. Dept. of Transportation. Research Center.
  48. Su, Y., Xin, S., Shi, J. and Zhang, Z. (2012), "Stress analysis of cement concrete pavement with special heavy mine vehicle", Energy Procedia, 16, 722-729. https://doi.org/10.1016/j.egypro.2012.01.117.
  49. Thiruppathi, R. (2013), "Discarded tyre rubber as concrete aggregate: a possible outlet for used tyres", 2013 International Conference on Current Trends in Engineering and Technology (ICCTET), 202-207.
  50. Thomas, B.S., Gupta, R.C., Kalla, P. and Cseteneyi, L. (2014), "Strength, abrasion and permeation characteristics of cement concrete containing discarded rubber fine aggregates", Constr. Build. Mater., 59, 204-212. https://doi.org/10.1016/j.conbuildmat.2014.01.074.
  51. Topcu, I.B. (1995), "The properties of rubberized concretes", Cement Concrete Res., 25(2), 304-310. https://doi.org/10.1016/0008-8846(95)00014-3.
  52. Vishwakarma, R.J. and Ingle, R.K. (2017), "Simplified approach for the evaluation of critical stresses in concrete pavement", Struct. Eng. Mech., 61(3), 389-396. https://doi.org/10.12989/sem.2017.61.3.389.
  53. Xiong, Z., Fang, Z., Feng, W., Liu, F., Yang, F. and Li, L. (2021), "Review of dynamic behaviour of rubberised concrete at material and member levels", J. Build. Eng., 38, 102237. https://doi.org/10.1016/j.jobe.2021.102237.
  54. Xue, J. and Shinozuka, M. (2013), "Rubberized concrete: A green structural material with enhanced energy-dissipation capability", Constr. Build. Mater., 42, 196-204. https://doi.org/10.1016/j.conbuildmat.2013.01.005.
  55. Yang, S., Kjartanson, B.H. and Lohnes, R.A. (2001), "Structural performance of scrap tire culverts", Can. J. Civil Eng., 28(2), 179-189. https://doi.org/10.1139/l00-082.
  56. Youssf, O., ElGawady, M.A. and Mills, J.E. (2015), "Experimental investigation of crumb rubber concrete columns under seismic loading", Struct., 3, 13-27. https://doi.org/10.1016/j.istruc.2015.02.005.
  57. Zheng, L., Huo, X.S. and Yuan, Y. (2008), "Experimental investigation on dynamic properties of rubberized concrete", Constr. Build. Mater., 22(5), 939-947. https://doi.org/10.1016/j.conbuildmat.2007.03.005.