DOI QR코드

DOI QR Code

Connection rotation requirements on FRP-strengthened steel-concrete composite beam systems

  • Panagiotis M. Stylianidis (Department of Civil Engineering, Neapolis University Pafos) ;
  • Michael F. Petrou (Department of Civil and Environmental Engineering, University of Cyprus)
  • Received : 2023.12.20
  • Accepted : 2024.09.30
  • Published : 2024.10.25

Abstract

Composite beams of steel and concrete strengthened with fiber-reinforced polymers (FRP) may exhibit considerably enhanced flexural behaviour, but the combination of three materials with different characteristics and the various possible failure mechanisms that may govern performance make their analysis quite demanding. Previous studies provided significant insights into this problem and several methods were proposed for calculating flexural stiffness and strength, but these studies are restricted to the single member level of a simply supported composite beam section. However, the problem considerably changes when the beam is part of a frame system due to the degree of continuity provided by the surrounding structure, which represents the most common situation in practice. This paper explores the behaviour of semi-continuous FRP-strengthened composite beams, by considering the response characteristics of their end connections and their effects on overall performance. A novel analytical model is derived, which enables a step-by-step representation of the nonlinear relationship between an incremental mid-span design bending moment and corresponding connection rotations. After verification against finite element analyses, a parametric study is conducted which shows that the substantially increased bending moment resistance of FRP-strengthened composite beams can hardly be fully utilized due to a deficiency of corresponding large deformation capacity available in the connections. The extent to which the presence FRP strengthening can be exploited to enhance the beam flexural response depends on the interplay between various structural parameters, including the connection rotation capacity, the beam span, and the FRP modulus of elasticity and ultimate strength.

Keywords

References

  1. Afefy, H.M., Sennah, K. and Akhlagh-Nejat, H. (2016), "Experimental and analytical investigations on the flexural behavior of CFRP-strengthened composite girders", J. Constr. Steel Res., 120, 94-105. https://doi.org/10.1016/j.jcsr.2016.01.010.
  2. Aidoo, J., Harries, K.A. and Petrou, M.F. (2004), "Fatigue behaviour of carbon fiber reinforced polymer-strengthened reinforced concrete bridge girders", J. Compos. Constr., 8(6), 501-509. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:6(501).
  3. Aksoylu, C., Ozkilic, Y.O., Yazman, S., Alsdudi, M., Gemi, L. and Arslan, M.H. (2023), "Numerical and analytical investigation of parameters influencing the behavior of shear beams strengthened by CFRP wrapping", Steel Compos. Struct., 47(2), 217-238. https://doi.org/10.12989/scs.2023.47.2.217.
  4. Al-Saidy, A.H., Klaiber, F.W. and Wipf, T.J. (2004), "Repair of steel composite beams with carbon fiber-reinforced polymer plates", J. Compos. Constr., 8(2), 163-172. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:2(163).
  5. Al-Saidy, A.H., Klaiber, F.W. and Wipf, T.J. (2007), "Strengthening of steel-concrete composite girders using carbon fiber reinforced polymer plates", Constr. Build. Mater., 21(2), 295-302. https://doi.org/10.1016/j.conbuildmat.2005.08.018.
  6. Anderson, D. and Najafi, A.A. (1994), "Performance of composite connections: Major axis end plate joints", J. Constr. Steel Res., 31(1), 31-57. https://doi.org/10.1016/0143-974X(94)90022-1.
  7. Anderson, D., Aribert, J.M., Bode, H. and Kronenburger, H.J. (2000), "Design rotation capacity of composite joints", Struct. Eng., 78(6), 25-29.
  8. Bakis, C.E., Bank, L.C., Brown, V., Cosenza, E., Davalos, J.F., Lesko, J.J., ... & Triantafillou, T.C. (2002), "Fiber-reinforced polymer composites for construction-State-of-the-art review", J. Compos. Constr., 6(2), 73-87. https://doi.org/10.1061/(ASCE)1090-0268(2002)6:2(73).
  9. Chen, M. and Das, S. (2009), "Experimental study on repair of corroded steel beam using CFRP", Steel Compos. Struct., 9(2), 103-118. https://doi.org/10.12989/scs.2009.9.2.103.
  10. Deng, J., Lee, M.M.K. and Li, S. (2011), "Flexural strength of steel-concrete composite beams reinforced with a prestressed CFRP plate", Constr. Build. Mater., 25(1), 379-384. https://doi.org/10.1016/j.conbuildmat.2010.06.015.
  11. Eljufout, T., Toutanji, H. and Al-Qaralleh, M. (2021), "Effect of CFRP strengthening systems on the fatigue limit of reinforced concrete beams", Struct. Infrastr. Eng., 17(3), 361-378. https://doi.org/10.1080/15732479.2020.1751665.
  12. Elkhabeery, O.H., Safar, S.S. and Mourad, S.A. (2018), "Flexural strength of steel I-beams reinforced with CFRP sheets at tension flange", J. Constr. Steel Res., 148, 572-588. https://doi.org/10.1016/j.jcsr.2018.05.038.
  13. El-Shihy, A.M., Fawzy, H.M., Mustafa, S.A. and El-Zohairy, A.A. (2010), "Experimental and numerical analysis of composite beams strengthened by CFRP laminates in hogging moment region", Steel Compos. Struct., 10(3), 281-295. https://doi.org/10.12989/scs.2010.10.3.281.
  14. El-Zohairy, A., Salim, H., Shaaban, H., Mustafa, S. and El-Shihy, A. (2017), "Experimental and FE parametric study on continuous steel-concrete composite beams strengthened with CFRP laminates", Constr. Build. Mater., 157, 885-898. https://doi.org/10.1016/j.conbuildmat.2017.09.148.
  15. Eurocode (2004a), Design of Concrete Structures. Part 1.1: General Rules and Rules for Buildings, European Committee for standardization; Brussels, Belgium.
  16. Eurocode (2004b), Design of Composite Steel and Concrete Structures. Part 1.1: General Rules and Rules for Buildings, European Committee for Standardization, Brussels, Belgium.
  17. Eurocode (2005a), Design of Steel Structures. Part 1.1: General Rules and Rules for Buildings, European Committee for Standardization, Brussels, Belgium.
  18. Eurocode (2005b), Design of Steel Structures. Part 1.8: Design of Joints, European Committee for Standardization, Brussels, Belgium.
  19. Fernando, D., Yu, T., Teng, J.G. and Zhao, X.L. (2009). "CFRP strengthening of rectangular steel tubes subjected to end bearing loads: Effect of adhesive properties and finite element modelling", Thin Wall. Struct., 47(10), 1020-1028. https://doi.org/10.1016/j.tws.2008.10.008.
  20. Gil, B. and Bayo, E. (2007), "Practical and efficient approaches for semi-rigid design of composite frames", Steel Compos. Struct., 7(2), 161-184. https://doi.org/10.12989/scs.2007.7.2.161.
  21. Gopalan, R. and Narayanan, P. (2024). "Experimental and numerical investigation of tensile-loaded staggered bolted and hybrid pultruded composite double lap joints", J. Adhes. Sci. Technol., 38(11), 1895-1924. https://doi.org/10.1080/01694243.2023.2282825.
  22. Hmidan, A., Kim, Y.J. and Yazdani, S. (2011), "CFRP repair of steel beams with various initial crack configurations", J. Compos. Constr., 15(6), 952-962. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000223.
  23. Hollaway, L.C. (2010), "A review of the present and future utilisation of FRP composites in the civil infrastructure with reference to their important in-service properties", Constr. Build. Mater., 24(12), 2419-2445. https://doi.org/10.1016/j.conbuildmat.2010.04.062.
  24. Hollaway, L.C. and Cadei, J. (2002). "Progress in the technique of upgrading metallic structures with advanced polymer composites", Prog. Struct. Eng. Mater., 4, 131-148. https://doi.org/10.1002/pse.112.
  25. Hollaway, L.C., Zhang, L., Photiou, N.K, Teng, J.G. and Zhang, S.S. (2006). "Advances in adhesive joining of carbon fibre/polymer composites to steel members for repair and rehabilitation of bridge structures", Adv. Struct. Eng., 9(6), 791-803. https://doi.org/10.1260/136943306779369419.
  26. Jaspart, J.P. and Weynand, K. (2016), Design of Joints in Steel and Composite Structures, Ernst & Sohn, Berlin, Germany.
  27. Jiang, C., Yu, Q.Q. and Gu, X.L. (2021), "A unified bond-slip model for the interface between FRP and steel", Compos. Part B Eng., 227, 109380. https://doi.org/10.1016/j.compositesb.2021.109380.
  28. Kalyani, G. and Pannirselvam, N. (2023), "Numerical studies on RC beams strengthened with an externally bonded aramid FRP sheets", International Conference on Civil Engineering Innovative Development in Engineering Advances, Singapore. https://doi.org/10.1007/978-981-99-6175-7_40.
  29. Lenwari, A., Thepchatri, T. and Albrecht, P. (2005), "Flexural response of steel beams strengthened with partial-length CFRP plates", J. Compos. Constr., 9(4), 296-303. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:4(296).
  30. Li, T.Q., Choo, B.S. and Nethercot, D.A. (1995), "Determination of rotation capacity requirements for steel and composite beams", J. Constr. Steel Res., 32(3), 303-332. https://doi.org/10.1016/0143-974X(95)93900-O.
  31. Liew, J.Y.R., Teo, T.H., Shanmugam, N.E. and Yu, C.H. (2000), "Testing of steel-concrete composite connections and appraisal of results", J. Constr. Steel Res., 56(2), 117-150. https://doi.org/10.1016/S0143-974X(99)00099-1.
  32. Lim, D. (2022), "Structural behavior of steel beams strengthened with CFRP strips and cables", Steel Compos. Struct., 42(3), 289-298. https://doi.org/10.12989/scs.2022.42.3.289.
  33. Linghoff, D., Haghani, R. and Al-Emrani, M. (2009), "Carbon-fibre composites for strengthening steel structures", Thin Wall. Struct., 47(10), 1048-1058. https://doi.org/10.1016/j.tws.2008.10.019.
  34. Liu, X., Tang, L., Jing, Y., Xiang, J., Tian, X., Liu, W., ... & Yang, G. (2022), "Behaviour of continuous steel-concrete composite beams strengthened with CFRP sheets at hogging-moment region", Compos. Struct., 291, 115695. https://doi.org/10.1016/j.compstruct.2022.115695.
  35. Mallick, P.K. (2007), Fiber-Reinforced Composites, CRC Press, Boca Raton, USA.
  36. Murugan, D. and Pannirselvam, N. (2023). "Strengthening of structures using FRP composites fibres", International Conference on Civil Engineering Innovative Development in Engineering Advances, Singapore. https://doi.org/10.1007/978-981-99-6175-7_46.
  37. Nethercot, D.A. (2002), "Design of non-sway composite frames", Struct. Eng., 80(6), 18-26.
  38. Nethercot, D.A. and Stylianidis, P. (2008), "The basis of semi-continuous composite construction", Steel Constr., 1(1), 24-33. https://doi.org/10.1002/stco.200890002.
  39. Norris, T., Saadatmanesh, H. and Ehsani, M.R. (1997), "Shear and flexural strengthening of R/C beams with carbon fiber sheets", J. Struct. Eng., 123(7), 903-911. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:7(903).
  40. Ritchie, P.A., Thomas, D.A., Lu, L.W. and Conelly, G.M. (1991), "External reinforcement of concrete beams using fiber reinforced plastics", ACI Struct. J., 88(4), 490-500. https://doi.org/10.14359/2723.
  41. Samaaneh, M.A., Sharif, A.M., Baluch, M.H. and Azad, A.K. (2016), "Numerical investigation of continuous composite girders strengthened with CFRP", Steel Compos. Struct., 21(6), 1307-1325. https://doi.org/10.12989/scs.2016.21.6.1307.
  42. Santarsiero, G., Picciano, V. and Masi, A. (2023), "Structural rehabilitation of half-joints in RC bridges: A state-of-the-art review", Struct. Infrastr. Eng., 1-24. https://doi.org/10.1080/15732479.2023.2200759.
  43. SCI/BCSA (2015), Steel Building Design: Design Data, SCI P363, The Steel Construction Institute, Ascot, UK.
  44. Setvati, M.R. and Mustaffa, Z. (2019), "Rehabilitation of corroded circular hollow sectional steel beam by CFRP patch", Steel Compos. Struct., 32(1), 127-139. https://doi.org/10.12989/scs.2019.32.1.127.
  45. Shaat, A. and Fam, A. (2008), "Repair of cracked steel girders connected to concrete slabs using carbon-fiber-reinforced polymer sheets", J. Compos. Constr., 12(6), 650-659. https://doi.org/10.1061/(ASCE)1090-0268(2008)12:6(650).
  46. Sharif, A.M., Samaaneh, M.A., Azad, A.K. and Baluch, M.H. (2016), "Use of CFRP to maintain composite action for continuous steel-concrete composite girders", J. Compos. Constr., 20(4), 04015088. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000645.
  47. Stylianidis, P.M. and Petrou, M.F. (2019), "Study of the flexural behaviour of FRP-strengthened steel-concrete composite beams", Struct., 22, 124-138. https://doi.org/10.1016/j.istruc.2019.07.012.
  48. Sweedan, A.M.I., Alhadid, M.M.A. and El-Sawy, K.M. (2016), "Experimental study of the flexural response of steel beams strengthened with anchored hybrid composites", Thin Wall. Struct., 99, 1-11. https://doi.org/10.1016/j.tws.2015.10.026.
  49. Tavakkolizadeh, M. and Saadatmanesh, H. (2003), "Strengthening of steel-concrete composite girders using carbon fiber reinforced polymers sheets", J. Struct. Eng., 129(1), 30-40. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:1(30).
  50. Teng, J.G., Fernando, D. and Yu, T. (2015), "Finite element modelling of debonding failures in steel beams flexurally strengthened with CFRP laminates", Eng. Struct., 86, 213-224. https://doi.org/10.1016/j.engstruct.2015.01.003.
  51. Teng, J.G., Yu, T. and Fernando, D. (2012), "Strengthening of steel structures with fiber-reinforced polymer composites" J. Constr. Steel Res., 78, 131-143. https://doi.org/10.1016/j.jcsr.2012.06.011.
  52. Wan, S.C., Huang, Q. and Guan, J. (2019), "Strengthening of steel-concrete composite beams with prestressed CFRP plates using an innovative anchorage system", Steel Compos. Struct., 32(1), 21-45. https://doi.org/10.12989/scs.2019.32.1.021.
  53. Wang, H.T. and Wu, G. (2018), "Bond-slip models for CFRP plates externally bonded to steel substrates", Compos. Struct., 184, 1204-1214. https://doi.org/10.1016/j.compstruct.2017.10.033.
  54. Wang, H.T., Wu, G., Pang, Y.Y. and Zakari, H.M. (2019), "Stress intensity factors for double-edged cracked steel beams strengthened with CFRP plates", Steel Compos. Struct., 33(5), 629-640. https://doi.org/10.12989/scs.2019.33.5.629.
  55. Wang, J.F. and Li, G.Q. (2008), "A practical design method for semi-rigid composite frames under vertical loads", J. Constr. Steel Res., 64(2), 176-189. https://doi.org/10.1016/j.jcsr.2007.05.005.
  56. Yousefi, O., Narmashiri, K. and Ghaemdoust, M.R. (2017), "Structural behaviors of notched steel beams strengthened using CFRP strips", Steel Compos. Struct., 25(1), 35-43. https://doi.org/10.12989/scs.2017.25.1.035.
  57. Yu, T., Fernando, D., Teng, J.G. and Zhao, X.L. (2012), "Experimental study on CFRP-to-steel bonded interfaces", Compos. Part B Eng., 43(5), 2279-2289. https://doi.org/10.1016/j.compositesb.2012.01.024.
  58. Zhao, X.L. (2014), FRP-Strengthened Metallic Structures, CRC Press, Oxon, UK.
  59. Zomorodian, M., Belarbi, A. and Ayoub, A. (2017), "Finite element model for predicting the shear behaviour of FRP-strengthened RC members", Eng. Struct., 153, 239-253. https://doi.org/10.1016/j.engstruct.2017.10.033.