Acknowledgement
본 연구는 정부(방위사업청)의 재원으로 국방기술진흥연구소의 지원을 받아 수행된 핵심 SW(응용개발) "함정 추진체계 상태기반 진단 SW 개발(20-108-D00-016(2021.12.14.)" 과제의 연구 결과임.
References
- K. P. Park, J. B. Lee, H. J. Lee, Y. K. Jo, and C. H. Kim, "Functional analysis of CBMS for naval ship," in Proceedings of the 18th Naval Ship Technology & Weapon Systems Seminar, Busan, South Korea, pp. 249-252, (2015).
- H. S. Lee, N. Y. Son, J. S. Shim, and J. S. Oh, "Development of Interlocking Signal Simulator for Verification of Naval Warship Engineering Control Logics", Journal of the Korea Institute of Information and Communication Engineering, vol.2 5, no. 8, pp. 1103-1109, (2021).
- Y. J. Kim, Y. K. Heo, J. G. Park, and M. A. Jeong, "Efficient Anomaly Detection Through Confidence Interval Estimation Based on Time Series Analysis", The Journal of Korea Information and Communications Society, vol. 39C, no. 8, pp. 708-715, (2014).
- J. Y. Lee, "Forecasting the Time-Series Data Converged on Time PLOT and Moving Average", Journal of the Korea Convergence Society, vol. 6, no. 4, pp. 161-167, (2015).
- M. J. Hyeon, C. Jin, M. J. Park, and H. Choi, "Application of Decision Tree Algorithm for Automating Public Survey Performance Review", Journal of the Korean Society of Industry Convergence, vol. 27, no. 2, pp. 333-341, (2024).
- J. H. Kim, M. S. Jang, J. E. Choi, Y. S. Heo, H. S. Chung, and S. Y. Park, "Simulation for Power Efficiency Optimization of Air Compressor Using Machine Learning Ensemble", Journal of the Korean Society of Industry Convergence, vol. 26, no. 6, pp. 1205-1213, (2023).
- J. H. Kim, and H. Y. Oh, "The methods to improve the performance of predictive model using machine learning for the quality properties of products," Journal of the Korea Institute of Information and Communication Engineering, vol. 25, no. 6, pp. 749-756, (2020).
- H. Drucker, C. J. Burges, L. Kaufman, A. Smola, and V. Vapnik, "Support vector regression machines," in Proceedings of the 9th International Conference on Neural Information Processing Systems, Cambridge: MA, pp. 155-161, (1996).
- J. R. Quinlan, "Induction of Decision Trees" Machine Learning, vol. 1, no. 1, pp. 81-106, (1986).
- G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T. Liu, "LightGBM: A highly efficient gradient boosting decision tree," in Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach: CA, pp. 3149-3157, (2017).
- J. Y. Kim, H. S. Lee, and J. S. Oh, "Study on prediction of ship's power using light GBM and XGBoost," Journal of Advanced Marine Engineering and Technology, vol. 44, no. 2, pp. 174-180, (2020).
- J. S. Shim, C. Y. Park, H. S. Lee, and J. S. Oh, "Design of Regression Model for Abnormal Diagnosis of Naval Propulsion System", Journal of the Korea Institute of Information and Communication Engineering, vol. 27, no. 8, pp. 941-950, (2023).