DOI QR코드

DOI QR Code

Design of CBM Algorithm for Naval On-board Equipment

함정 탑재장비 상태진단 알고리즘 설계

  • Jae-Soon Shim (Naval System Team3, Naval R&D Center, Hanwha Systems) ;
  • Hyeong-Min Lee (Naval System Team3, Naval R&D Center, Hanwha Systems) ;
  • Chan-Yeong Park (Naval System Team3, Naval R&D Center, Hanwha Systems)
  • 심재순 (한화시스템 해양연구소 해양시스템3팀) ;
  • 이형민 (한화시스템 해양연구소 해양시스템3팀) ;
  • 박찬영 (한화시스템 해양연구소 해양시스템3팀)
  • Received : 2024.09.25
  • Accepted : 2024.10.08
  • Published : 2024.10.31

Abstract

The Integrated Condition Assessment System (ICAS) is a system that supports Condition Based Maintenance (CBM) by diagnosing the status of major onboard equipment on a naval ship in real time and allowing maintenance personnel to immediately perform maintenance when an abnormal condition occurs to maintain the operational performance of the on-board equipment. This study introduces the necessity of data preprocessing collected from naval ship, and compare and review baselines generated through statistical and designed machine learning algorithms using the same data preprocessing. Through these, this paper analyzes and proposes the suitability of a baseline algorithm, a machine learning methods that has not been applied to the condition based maintenance of naval ship equipment.

Keywords

Acknowledgement

본 연구는 정부(방위사업청)의 재원으로 국방기술진흥연구소의 지원을 받아 수행된 핵심 SW(응용개발) "함정 추진체계 상태기반 진단 SW 개발(20-108-D00-016(2021.12.14.)" 과제의 연구 결과임.

References

  1. K. P. Park, J. B. Lee, H. J. Lee, Y. K. Jo, and C. H. Kim, "Functional analysis of CBMS for naval ship," in Proceedings of the 18th Naval Ship Technology & Weapon Systems Seminar, Busan, South Korea, pp. 249-252, (2015). 
  2. H. S. Lee, N. Y. Son, J. S. Shim, and J. S. Oh, "Development of Interlocking Signal Simulator for Verification of Naval Warship Engineering Control Logics", Journal of the Korea Institute of Information and Communication Engineering, vol.2 5, no. 8, pp. 1103-1109, (2021). 
  3. Y. J. Kim, Y. K. Heo, J. G. Park, and M. A. Jeong, "Efficient Anomaly Detection Through Confidence Interval Estimation Based on Time Series Analysis", The Journal of Korea Information and Communications Society, vol. 39C, no. 8, pp. 708-715, (2014). 
  4. J. Y. Lee, "Forecasting the Time-Series Data Converged on Time PLOT and Moving Average", Journal of the Korea Convergence Society, vol. 6, no. 4, pp. 161-167, (2015). 
  5. M. J. Hyeon, C. Jin, M. J. Park, and H. Choi, "Application of Decision Tree Algorithm for Automating Public Survey Performance Review", Journal of the Korean Society of Industry Convergence, vol. 27, no. 2, pp. 333-341, (2024). 
  6. J. H. Kim, M. S. Jang, J. E. Choi, Y. S. Heo, H. S. Chung, and S. Y. Park, "Simulation for Power Efficiency Optimization of Air Compressor Using Machine Learning Ensemble", Journal of the Korean Society of Industry Convergence, vol. 26, no. 6, pp. 1205-1213, (2023). 
  7. J. H. Kim, and H. Y. Oh, "The methods to improve the performance of predictive model using machine learning for the quality properties of products," Journal of the Korea Institute of Information and Communication Engineering, vol. 25, no. 6, pp. 749-756, (2020). 
  8. H. Drucker, C. J. Burges, L. Kaufman, A. Smola, and V. Vapnik, "Support vector regression machines," in Proceedings of the 9th International Conference on Neural Information Processing Systems, Cambridge: MA, pp. 155-161, (1996). 
  9. J. R. Quinlan, "Induction of Decision Trees" Machine Learning, vol. 1, no. 1, pp. 81-106, (1986). 
  10. G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T. Liu, "LightGBM: A highly efficient gradient boosting decision tree," in Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach: CA, pp. 3149-3157, (2017). 
  11. J. Y. Kim, H. S. Lee, and J. S. Oh, "Study on prediction of ship's power using light GBM and XGBoost," Journal of Advanced Marine Engineering and Technology, vol. 44, no. 2, pp. 174-180, (2020). 
  12. J. S. Shim, C. Y. Park, H. S. Lee, and J. S. Oh, "Design of Regression Model for Abnormal Diagnosis of Naval Propulsion System", Journal of the Korea Institute of Information and Communication Engineering, vol. 27, no. 8, pp. 941-950, (2023).