DOI QR코드

DOI QR Code

미생물 내성 강화: 산업 생명공학에서의 적응 실험실 진화의 역할

Enhancing Microbial Resilience: The Role of Adaptive Laboratory Evolution in Industrial Biotechnology

  • 마리에스 테아비타 카타리나 (경성대학교 식품생명공학과) ;
  • 주은재 (경성대학교 식품생명공학과) ;
  • 이진호 (경성대학교 식품생명공학과)
  • Theavita Chatarina Mariyes (Department of Food Science and Biotechnology, BB21+, Kyungsung University) ;
  • Eun-Jae Ju (Department of Food Science and Biotechnology, BB21+, Kyungsung University) ;
  • Jin-Ho Lee (Department of Food Science and Biotechnology, BB21+, Kyungsung University)
  • 투고 : 2024.08.21
  • 심사 : 2024.10.08
  • 발행 : 2024.10.30

초록

산업 생명공학은 지속 가능한 화학물질, 연료, 의약품 생산을 위해 효모와 대장균과 같은 미생물을 활용합니다. 그러나 미생물 생산은 환경 스트레스로 인해 효율성과 경제성이 저해되는 문제에 직면하고 있다. 전통적인 유전공학은 많은 해결책을 제공하지만, 종종 산업적 조건에서 견딜 수 있는 강력한 균주를 만드는 데 어려움이 있다. 적응 실험실 진화는 자연 선택을 모방하여 제어된 환경에서 미생물 내성을 향상시킬 수 있는 좋은 전략으로 부상했다. 적응 실험실 진화는 다양한 미생물에서 유해 화합물, 극한의 pH, 고온 등의 스트레스에 대한 내성을 성공적으로 향상시켰다. 효모에서는 적응 실험실 진화가 에탄올 생산에 중요한 아세트산 및 퓨프랄 내성을 향상시켰다. 또한, 대장균에서는 적응 실험실 진화가 산 스트레스에 대한 저항성을 증가시키고 숙신산과 세린의 생산을 개선했다. 젖산균에서는 적응 실험실 진화가 젖산 생산, 열 및 냉동-해동 스트레스 하에서의 균주 안정성을 증대시켜, 산업적 및 프로바이오틱 응용 분야에 혜택을 주었다. 코리네박테리움 글루타미컴 또한 적응 실험실 진화를 통해 성장률, 스트레스 내성 및 생산 능력에서 상당한 개선을 보였다. 이러한 발전은 다양한 산업 공정을 최적화하는 데 있어 적응 실험실 진화의 역할을 강조하며, 미생물 생명공학에서 강력한 도구임을 입증한다. 본 논문은 적응 실험실 진화의 최신 응용 및 방법을 조명하며, 산업 미생물에 미치는 영향과 지속 가능한 생물 생산을 위한 미래 연구의 잠재력을 보여주었다.

Industrial biotechnology leverages microorganisms such as Saccharomyces cerevisiae and Escherichia coli for sustainable production of chemicals, fuels, and pharmaceuticals. However, despite their potential, microbial production faces challenges due to environmental stressors, which impede efficiency and economic feasibility. While traditional genetic engineering offers solutions, it often fails to create robust strains for industrial conditions. Adaptive laboratory evolution (ALE) has emerged as a potent strategy to enhance microbial resilience by mimicking natural selection under controlled conditions. ALE has successfully improved tolerance to stressors such as toxic compounds, extreme pH, and high temperatures in various microorganisms. In yeasts, ALE has enhanced acetic acid and furfural tolerance, which is crucial for bioethanol production. Similarly, in E. coli, ALE has increased resistance to acid stress and improved production of succinic acid and L-serine. In lactic acid bacteria, ALE has boosted lactic acid production and strain stability under thermal and freeze-thaw stresses, benefiting both industrial and probiotic applications. Corynebacterium glutamicum has also shown significant improvements in growth rates, stress tolerance, and production capabilities through ALE. These advancements underline ALE's role in optimizing microbial strains for diverse industrial processes, making it a powerful tool in microbial biotechnology. This review highlights the latest applications and methods of ALE, emphasizing its impact on industrial microorganisms and potential for future research in sustainable bioproduction.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. RS-2023-00252347).

참고문헌

  1. Baeshen, M. N., Al-Hejin, A. M., Bora, R. S., Ahmed, M. M., Ramadan, H. A., Saini, K. S., Baeshen, N. A. and Redwan, E. M. 2015. Production of biopharmaceuticals in E. coli: Current scenario and future perspectives. J. Microbiol. Biotechnol. 25, 953-962.
  2. Bommasamudram, J., Kumar, P., Kapur, S., Sharma, D. and Devappa, S. 2023. Development of thermotolerant Lactobacilli cultures with improved probiotic properties using adaptive laboratory evolution method. Probiotics Antimicrob. Proteins 15, 832-843.
  3. Bonturi, N., Crucello, A., Viana, A. J. C. and Miranda, E. A. 2017. Microbial oil production in sugarcane bagasse hemicellulosic hydrolysate without nutrient supplementation by a Rhodosporidium toruloides adapted strain. Proc. Biochem. 57, 16-25.
  4. Brusseler, C., Radek, A., Tenhaef, N., Krumbach, K., Noack, S. and Marienhagen, J. 2018. The myo-inositol/proton symporter IolT1 contributes to D-xylose uptake in Corynebacterium glutamicum. Bioresour. Technol. 249, 953-961.
  5. Catrileo, D., Acuna-Fontecilla, A. and Godoy, L. 2020. Adaptive laboratory evolution of native Torulaspora delbrueckii YCPUC10 with enhanced ethanol resistance and evaluation in co-inoculated fermentation. Front. Microbiol. 11, 595023.
  6. Charusanti, P., Fong, N. L., Nagarajan, H., Pereira, A. R., Li, H. J., Abate, E. A., Su, Y., Gerwick, W. H. and Palsson, B. O. 2012. Exploiting adaptive laboratory evolution of Streptomyces clavuligerus for antibiotic discovery and overproduction. PLoS One 7, e33727.
  7. Conrad, T. M., Lewis, N. E. and Palsson, B. O. 2011. Microbial laboratory evolution in the era of genome-scale science. Mol. Syst. Biol. 7, 509.
  8. Cubas-Cano, E., Gonzalez-Fernandez, C. and Tomas-Pejo, E. 2019. Evolutionary engineering of Lactobacillus pentosus improves lactic acid productivity from xylose-rich media at low pH. Bioresour. Technol. 288, 121540.
  9. Dragosits, M. and Mattanovich, D. 2013. Adaptive laboratory evolution-principles and applications for biotechnology. Microb. Cell Fact. 12, 64.
  10. Du, B., Olson, C. A., Sastry, A. V., Fang, X., Phaneuf, P. V., Chen, K., Wu, M., Szubin, R., Xu, S., Gao, Y., Hefner, Y., Feist, A. M. and Palsson, B. O. 2020. Adaptive laboratory evolution of Escherichia coli under acid stress. Microbiology (Reading) 166, 141-148.
  11. Espinosa, M. I., Gonzalez-Garcia, R. A., Valgepea, K., Plan, M. R., Scott, C., Pretorius, I. S., Marcellin, E., Paulsen, I. T. and Williams, T. C. 2020. Adaptive laboratory evolution of native methanol assimilation in Saccharomyces cerevisiae. Nat. Commun. 11, 5564.
  12. Gassler, T., Baumschabl, M., Sallaberger, J., Egermeier, M. and Mattanovich, D. 2022. Adaptive laboratory evolution and reverse engineering enhances autotrophic growth in Pichia pastoris. Metab. Eng. 69, 112-121.
  13. Gassler, T., Sauer, M., Gasser, B., Egermeier, M., Troyer, C., Causon, T., Hann, S., Mattanovich, D. and Steiger, M. G. 2020. The industrial yeast Pichia pastoris is converted from a heterotroph into an autotroph capable of growth on CO2. Nat. Biotechnol. 38, 210-216.
  14. Godara, A. and Kao, K. C. 2020. Adaptive laboratory evolution for growth coupled microbial production. World J. Microbiol. Biotechnol. 36, 175.
  15. Hartono, S., Meijerink, M. F. A., Abee, T., Smid, E. J. and van Mastrigt, O. 2023. The stressostat: A novel approach in adaptive laboratory evolution to improve end-product resistance. New Biotechnol. 78, 123-130.
  16. Hemansi, Himanshu, Patel, A. K., Saini, J. K. and Singhania, R. R. 2022. Development of multiple inhibitor tolerant yeast via adaptive laboratory evolution for sustainable bioethanol production. Bioresour. Technol. 344, 126247.
  17. Hirasawa, T. and Maeda, T. 2022. Adaptive laboratory evolution of microorganisms: Methodology and application for bioproduction. Microorganisms 11, 92.
  18. Hong, K. K., Vongsangnak, W., Vemuri, G. N. and Nielsen, J. 2011. Unravelling evolutionary strategies of yeast for improving galactose utilization through integrated systems level analysis. Proc. Natl. Acad. Sci. USA 108, 12179-12184.
  19. Huang, M. and Kao, K. C. 2018. Identifying novel genetic determinants for oxidative stress tolerance in Candida glabrata via adaptive laboratory evolution. Yeast 35, 605-618.
  20. Jiang, J., Luo, Y., Fei, P., Zhu, Z., Peng, J., Lu, J., Zhu, D. and Wu, H. 2024. Effect of adaptive laboratory evolution of engineered Escherichia coli in acetate on the biosynthesis of succinic acid from glucose in two-stage cultivation. Bioresour. Bioprocess 11, 34.
  21. Jiang, L. Y., Chen, S. G., Zhang, Y. Y. and Liu, J. Z. 2013. Metabolic evolution of Corynebacterium glutamicum for increased production of L-ornithine. BMC Biotechnol. 13, 47.
  22. Kuepper, J., Otto, M., Dickler, J., Behnken, S., Magnus, J., Jager, G., Blank, L. M. and Wierckx, N. 2020. Adaptive laboratory evolution of Pseudomonas putida and Corynebacterium glutamicum to enhance anthranilate tolerance. Microbiology 166, 1025-1037.
  23. Kukurudz, R. J., Chapel, M., Wonitowy, Q., Adamu Bukari, A. R., Sidney, B., Sierhuis, R. and Gerstein, A. C. 2022. Acquisition of cross-azole tolerance and aneuploidy in Candida albicans strains evolved to posaconazole. G3 (Bethesda) 12, jkac156.
  24. Kwon, Y. W., Bae, J. H., Kim, S. A. and Han, N. S. 2018. Development of freeze-thaw tolerant Lactobacillus rhamnosus GG by adaptive laboratory evolution. Front. Microbiol. 9, 2781.
  25. LaCroix, R. A., Sandberg, T. E., O'Brien, E. J., Utrilla, J., Ebrahim, A., Guzman, G. I., Szubin, R., Palsson, B. O. and Feist, A. M. 2015. Use of adaptive laboratory evolution to discover key mutations enabling rapid growth of Escherichia coli K-12 MG1655 on glucose minimal medium. Appl. Environ. Microbiol. 81, 17-30.
  26. Lessmeier, L. and Wendisch, V. F. 2015. Identification of two mutations increasing the methanol tolerance of Corynebacterium glutamicum. BMC Microbiol. 15, 216.
  27. Lee, D. H. and Palsson, B. O. 2010. Adaptive evolution of Escherichia coli K-12 MG1655 during growth on a nonnative carbon source, L-1,2-propanediol. Appl. Environ. Microbiol. 76, 4158-4168.
  28. Lee, J., Saddler, J. N., Um, Y. and Woo, H. M. 2016. Adaptive evolution and metabolic engineering of a cellobiose- and xylose- negative Corynebacterium glutamicum that co-utilizes cellobiose and xylose. Microb. Cell Fact. 15, 20.
  29. Maeda, T., Kawada, M., Sakata, N., Kotani, H. and Furusawa, C. 2021. Laboratory evolution of Mycobacterium on agar plates for analysis of resistance acquisition and drug sensitivity profiles. Sci. Rep. 11, 15136.
  30. Mahr, R., Gatgens, C., Gatgens, J., Polen, T., Kalinowski, J. and Frunzke, J. 2015. Biosensor-driven adaptive laboratory evolution of l-valine production in Corynebacterium glutamicum. Metab. Eng. 32, 184-194.
  31. Mfon, E. I. 2024. Microbial biotechnology: Application of bacteria in various industrial processes and environment remediation. Int. J. Develop. Sustain. Environ. Manag. 4, 16-24.
  32. Ming, H., Xu, D., Guo, Z. and Liu, Y. 2016. Adaptive evolution of Lactobacillus casei under acidic conditions enhances multiple-stress tolerance. Food Sci. Technol. Res. 22, 331-336.
  33. Mladenovic, D., Pejin, J., Kocic-Tanackov, S., Djukic-Vukovic, A. and Mojovic, L. 2019. Enhanced lactic acid production by adaptive evolution of Lactobacillus paracasei on agro-industrial substrate. Appl. Biochem. Biotechnol. 187, 753-769.
  34. Mo, W., Wang, M., Zhan, R., Yu, Y., He, Y. and Lu, H. 2019. Kluyveromyces marxianus developing ethanol tolerance during adaptive evolution with significant improvements of multiple pathways. Biotechnol. Biofuels 12, 63.
  35. Mohd Azhar, S. H., Abdulla, R., Jambo, S. A., Marbawi, H., Gansau, J. A., Mohd Faik, A. A. and Rodrigues, K. F. 2017. Yeasts in sustainable bioethanol production: A review. Biochem. Biophys. Rep. 10, 52-61.
  36. Mundhada, H., Seoane, J. M., Schneider, K., Koza, A., Christensen, H. B., Klein, T., Phaneuf, P. V., Herrgard, M., Feist, A. M. and Nielsen, A. T. 2017. Increased production of L-serine in Escherichia coli through adaptive laboratory evolution. Metab. Eng. 39, 141-150.
  37. Navarrete, C., Jacobsen, I. H., Martinez, J. L. and Procentese, A. 2020. Cell factories for industrial production processes: Current issues and emerging solutions. Processes 8, 768.
  38. Niazi, S. K. and Magoola, M. 2023. Advances in Escherichia coli-based therapeutic protein expression: Mammalian conversion, continuous manufacturing, and cell-free production. Biologics 3, 380-401.
  39. Nouri, H., Azin, M. and Mousavi, S. L. 2018. Enhanced ethanol production from sugarcane bagasse hydrolysate with high content of inhibitors by an adapted Barnettozyma californica. Environ. Prog. Sustain. Energy 37, 1169-1175.
  40. Oide, S., Gunji, W., Moteki, Y., Yamamoto, S., Suda, M., Jojima, T., Yukawa, H. and Inui, M. 2015. Thermal and solvent stress cross-tolerance conferred to Corynebacterium glutamicum by adaptive laboratory evolution. Appl. Environ. Microbiol. 81, 2284-2298.
  41. Ottilie, S., Luth, M. R., Hellemann, E., Goldgof, G. M., Vigil, E., Kumar, P., Cheung, A. L., Song, M., Godinez-Macias, K. P., Carolino, K., Yang, J., Lopez, G., Abraham, M., Tarsio, M., LeBlanc, E., Whitesell, L., Schenken, J., Gunawan, F., Patel, R., Smith, J., Love, M. S., Williams, R. M., McNamara, C. W., Gerwick, W. H., Ideker, T., Suzuki, Y., Wirth, D. F., Lukens, A. K., Kane, P. M., Cowen, L. E., Durrant, J. D. and Winzeler, E. A. 2022. Adaptive laboratory evolution in S.cerevisiae highlights role of transcription factors in fungal xenobiotic resistance. Commun. Biol. 5, 1-14.
  42. Pena-Castro, J. M., Munoz-Paez, K. M., Robledo-Narvaez, P. N. and Vazquez-Nunez, E. 2023. Engineering the metabolic landscape of microorganisms for lignocellulosic conversion. Microorganisms 11, 2197.
  43. Pfeifer, E., Gatgens, C., Polen, T. and Frunzke, J. 2017. Adaptive laboratory evolution of Corynebacterium glutamicum towards higher growth rates on glucose minimal medium. Sci. Rep. 7, 16780.
  44. Portnoy, V. A., Bezdan, D. and Zengler, K. 2011. Adaptive laboratory evolution-harnessing the power of biology for metabolic engineering. Curr. Opin. Biotechnol. 22, 590-594.
  45. Prell, C., Busche, T., Ruckert, C., Nolte, L., Brandenbusch, C. and Wendisch, V. F. 2021. Adaptive laboratory evolution accelerated glutarate production by Corynebacterium glutamicum. Microb. Cell Fact. 20, 97.
  46. Radek, A., Tenhaef, N., Muller, M. F., Brusseler, C., Wiechert, W., Marienhagen, J., Polen, T. and Noack, S. 2017. Miniaturized and automated adaptive laboratory evolution: Evolving Corynebacterium glutamicum towards an improved D-xylose utilization. Bioresour. Technol. 245 (Pt B), 1377-1385.
  47. Reyes, L. H., Gomez, J. M. and Kao, K. C. 2014. Improving carotenoids production in yeast via adaptive laboratory evolution. Metab. Eng. 21, 26-33.
  48. Sanchez-Adria, I. E., Sanmartin, G., Prieto, J. A., Estruch, F., Fortis, E. and Randez-Gil, F. 2023. Adaptive laboratory evolution for acetic acid-tolerance matches sourdough challenges with yeast phenotypes. Microbiol. Res. 277, 127487.
  49. Sandberg, T. E., Pedersen, M., LaCroix, R. A., Ebrahim, A., Bonde, M., Herrgard, M. J., Palsson, B. O., Sommer, M. and Feist, A. M. 2014. Evolution of Escherichia coli to 42℃ and subsequent genetic engineering reveals adaptive mechanisms and novel mutations. Mol. Biol. Evol. 31, 2647-2662.
  50. Sandberg, T. E., Salazar, M. J., Weng, L. L., Palsson, B. O. and Feist, A. M. 2019. The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology. Metab. Eng. 56, 1-16.
  51. Schwentner, A., Feith, A., Munch, E., Busche, T., Ruckert, C., Kalinowski, J., Takors, R. and Blombach, B. 2018. Metabolic engineering to guide evolution-creating a novel mode for L-valine production with Corynebacterium glutamicum. Metab. Eng. 47, 31-41.
  52. Singhvi, M., Zendo, T., Gokhale, D. and Sonomoto, K. 2018. Greener L-lactic acid production through in situ extractive fermentation by an acid-tolerant Lactobacillus strain. Appl. Microbiol. Biotechnol. 102, 6425-6435.
  53. Stella, R. G., Wiechert, J., Noack, S. and Frunzke, J. 2019. Evolutionary engineering of Corynebacterium glutamicum. Biotechnol. J. 14, 1800444.
  54. Sun, Q., Liu, D. and Chen, Z. 2023. Engineering and adaptive laboratory evolution of Escherichia coli for improving methanol utilization based on a hybrid methanol assimilation pathway. Front. Bioeng. Biotechnol. 10, 1089639.
  55. Takeno, S., Murata, N., Kura, M., Takasaki, M., Hayashi, M. and Ikeda, M. 2018. The accD3 gene for mycolic acid biosynthesis as a target for improving fatty acid production by fatty acid-producing Corynebacterium glutamicum strains. Appl. Microbiol. Biotechnol. 102, 10603-10612.
  56. Takeno, S., Takasaki, M., Urabayashi, A., Mimura, A., Muramatsu, T., Mitsuhashi, S. and Ikeda, M. 2013. Development of fatty acid-producing Corynebacterium glutamicum strains. Appl. Environ. Microbiol. 79, 6776-6783.
  57. Tian, X., Liu, X., Zhang, Y., Chen, Y., Hang, H., Chu, J. and Zhuang, Y. 2021. Metabolic engineering coupled with adaptive evolution strategies for the efficient production of high-quality L-lactic acid by Lactobacillus paracasei. Bioresour. Technol. 323, 124549.
  58. Wang, J., Dong, X., Shao, Y., Guo, H., Pan, L., Hui, W., Kwok, L. Y., Zhang, H. and Zhang, W. 2017. Genome adaptive evolution of Lactobacillus casei under long-term antibiotic selection pressures. BMC Genomics 18, 320.
  59. Wang, G., Li, Q., Zhang, Z., Yin, X., Wang, B. and Yang, X. 2023. Recent progress in adaptive laboratory evolution of industrial microorganisms. J. Ind. Microbiol. Biotechnol. 50, kuac023.
  60. Wang, X., Khushk, I., Xiao, Y., Gao, Q. and Bao, J. 2018. Tolerance improvement of Corynebacterium glutamicum on lignocellulose derived inhibitors by adaptive evolution. Appl. Microbiol Biotechnol. 102, 377-388.
  61. Wang, Y., Fan, L., Tuyishime, P., Liu, J., Zhang, K., Gao, N., Zhang, Z., Ni, X., Feng, J., Yuan, Q., Ma, H., Zheng, P., Sun, J. and Ma, Y. 2020. Adaptive laboratory evolution enhances methanol tolerance and conversion in engineered Corynebacterium glutamicum. Commun. Biol. 3, 1-15.
  62. Wang, Z., Liu, J., Chen, L., Zeng, A. P., Solem, C. and Jensen, P. R. 2018. Alterations in the transcription factors GntR1 and RamA enhance the growth and central metabolism of Corynebacterium glutamicum. Metab. Eng. 48, 1-12.
  63. Wang, Z., Zhou, L., Lu, M., Zhang, Y., Perveen, S., Zhou, H., Wen, Z., Xu, Z. and Jin, M. 2021. Adaptive laboratory evolution of Yarrowia lipolytica improves ferulic acid tolerance. Appl. Microbiol. Biotechnol. 105, 1745-1758.
  64. Wright, J., Bellissimi, E., de Hulster, E., Wagner, A., Pronk, J. T. and van Maris, A. J. 2011. Batch and continuous culture-based selection strategies for acetic acid tolerance in xylose-fermenting Saccharomyces cerevisiae. FEMS Yeast Res. 11, 299-306.
  65. Wu, Y., Jameel, A., Xing, X. H. and Zhang, C. 2022. Advanced strategies and tools to facilitate and streamline microbial adaptive laboratory evolution. Trends Biotechnol. 40, 38-59.
  66. Yao, L., Jia, Y., Zhang, Q., Zheng, X., Yang, H., Dai, J. and Chen, X. 2024. Adaptive laboratory evolution to obtain furfural tolerant Saccharomyces cerevisiae for bioethanol production and the underlying mechanism. Front. Microbiol. 14, 1333777.
  67. Zhang, H., Zhang, P., Wu, T. and Ruan, H. 2023. Bioethanol production based on Saccharomyces cerevisiae: Opportunities and challenges. Fermentation 9, 709.
  68. Zhang, J., Wu, C., Du, G. and Chen, J. 2012. Enhanced acid tolerance in Lactobacillus casei by adaptive evolution and compared stress response during acid stress. Biotechnol. Bioproc. Eng. 17, 283-289.
  69. Zhang, Q., Wu, D., Lin, Y., Wang, X., Kong, H. and Tanaka, S. 2015. Substrate and product inhibition on yeast performance in ethanol fermentation. Energy Fuels 29, 1019-1027.
  70. Zhao, J., Xu, L., Wang, Y., Zhao, X., Wang, J., Garza, E., Manow, R. and Zhou, S. 2013. Homofermentative production of optically pure L-lactic acid from xylose by genetically engineered Escherichia coli B. Microb. Cell Fact. 12, 57.
  71. Zheng, Y., Kong, S., Luo, S., Chen, C., Cui, Z., Sun, X., Chen, T. and Wang, Z. 2022. Improving furfural tolerance of Escherichia coli by integrating adaptive laboratory evolution with CRISPR-enabled trackable genome engineering (CREATE). ACS Sustain. Chem. Eng. 10, 2318-2330.