과제정보
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. RS-2023-00252347).
참고문헌
- Baeshen, M. N., Al-Hejin, A. M., Bora, R. S., Ahmed, M. M., Ramadan, H. A., Saini, K. S., Baeshen, N. A. and Redwan, E. M. 2015. Production of biopharmaceuticals in E. coli: Current scenario and future perspectives. J. Microbiol. Biotechnol. 25, 953-962.
- Bommasamudram, J., Kumar, P., Kapur, S., Sharma, D. and Devappa, S. 2023. Development of thermotolerant Lactobacilli cultures with improved probiotic properties using adaptive laboratory evolution method. Probiotics Antimicrob. Proteins 15, 832-843.
- Bonturi, N., Crucello, A., Viana, A. J. C. and Miranda, E. A. 2017. Microbial oil production in sugarcane bagasse hemicellulosic hydrolysate without nutrient supplementation by a Rhodosporidium toruloides adapted strain. Proc. Biochem. 57, 16-25.
- Brusseler, C., Radek, A., Tenhaef, N., Krumbach, K., Noack, S. and Marienhagen, J. 2018. The myo-inositol/proton symporter IolT1 contributes to D-xylose uptake in Corynebacterium glutamicum. Bioresour. Technol. 249, 953-961.
- Catrileo, D., Acuna-Fontecilla, A. and Godoy, L. 2020. Adaptive laboratory evolution of native Torulaspora delbrueckii YCPUC10 with enhanced ethanol resistance and evaluation in co-inoculated fermentation. Front. Microbiol. 11, 595023.
- Charusanti, P., Fong, N. L., Nagarajan, H., Pereira, A. R., Li, H. J., Abate, E. A., Su, Y., Gerwick, W. H. and Palsson, B. O. 2012. Exploiting adaptive laboratory evolution of Streptomyces clavuligerus for antibiotic discovery and overproduction. PLoS One 7, e33727.
- Conrad, T. M., Lewis, N. E. and Palsson, B. O. 2011. Microbial laboratory evolution in the era of genome-scale science. Mol. Syst. Biol. 7, 509.
- Cubas-Cano, E., Gonzalez-Fernandez, C. and Tomas-Pejo, E. 2019. Evolutionary engineering of Lactobacillus pentosus improves lactic acid productivity from xylose-rich media at low pH. Bioresour. Technol. 288, 121540.
- Dragosits, M. and Mattanovich, D. 2013. Adaptive laboratory evolution-principles and applications for biotechnology. Microb. Cell Fact. 12, 64.
- Du, B., Olson, C. A., Sastry, A. V., Fang, X., Phaneuf, P. V., Chen, K., Wu, M., Szubin, R., Xu, S., Gao, Y., Hefner, Y., Feist, A. M. and Palsson, B. O. 2020. Adaptive laboratory evolution of Escherichia coli under acid stress. Microbiology (Reading) 166, 141-148.
- Espinosa, M. I., Gonzalez-Garcia, R. A., Valgepea, K., Plan, M. R., Scott, C., Pretorius, I. S., Marcellin, E., Paulsen, I. T. and Williams, T. C. 2020. Adaptive laboratory evolution of native methanol assimilation in Saccharomyces cerevisiae. Nat. Commun. 11, 5564.
- Gassler, T., Baumschabl, M., Sallaberger, J., Egermeier, M. and Mattanovich, D. 2022. Adaptive laboratory evolution and reverse engineering enhances autotrophic growth in Pichia pastoris. Metab. Eng. 69, 112-121.
- Gassler, T., Sauer, M., Gasser, B., Egermeier, M., Troyer, C., Causon, T., Hann, S., Mattanovich, D. and Steiger, M. G. 2020. The industrial yeast Pichia pastoris is converted from a heterotroph into an autotroph capable of growth on CO2. Nat. Biotechnol. 38, 210-216.
- Godara, A. and Kao, K. C. 2020. Adaptive laboratory evolution for growth coupled microbial production. World J. Microbiol. Biotechnol. 36, 175.
- Hartono, S., Meijerink, M. F. A., Abee, T., Smid, E. J. and van Mastrigt, O. 2023. The stressostat: A novel approach in adaptive laboratory evolution to improve end-product resistance. New Biotechnol. 78, 123-130.
- Hemansi, Himanshu, Patel, A. K., Saini, J. K. and Singhania, R. R. 2022. Development of multiple inhibitor tolerant yeast via adaptive laboratory evolution for sustainable bioethanol production. Bioresour. Technol. 344, 126247.
- Hirasawa, T. and Maeda, T. 2022. Adaptive laboratory evolution of microorganisms: Methodology and application for bioproduction. Microorganisms 11, 92.
- Hong, K. K., Vongsangnak, W., Vemuri, G. N. and Nielsen, J. 2011. Unravelling evolutionary strategies of yeast for improving galactose utilization through integrated systems level analysis. Proc. Natl. Acad. Sci. USA 108, 12179-12184.
- Huang, M. and Kao, K. C. 2018. Identifying novel genetic determinants for oxidative stress tolerance in Candida glabrata via adaptive laboratory evolution. Yeast 35, 605-618.
- Jiang, J., Luo, Y., Fei, P., Zhu, Z., Peng, J., Lu, J., Zhu, D. and Wu, H. 2024. Effect of adaptive laboratory evolution of engineered Escherichia coli in acetate on the biosynthesis of succinic acid from glucose in two-stage cultivation. Bioresour. Bioprocess 11, 34.
- Jiang, L. Y., Chen, S. G., Zhang, Y. Y. and Liu, J. Z. 2013. Metabolic evolution of Corynebacterium glutamicum for increased production of L-ornithine. BMC Biotechnol. 13, 47.
- Kuepper, J., Otto, M., Dickler, J., Behnken, S., Magnus, J., Jager, G., Blank, L. M. and Wierckx, N. 2020. Adaptive laboratory evolution of Pseudomonas putida and Corynebacterium glutamicum to enhance anthranilate tolerance. Microbiology 166, 1025-1037.
- Kukurudz, R. J., Chapel, M., Wonitowy, Q., Adamu Bukari, A. R., Sidney, B., Sierhuis, R. and Gerstein, A. C. 2022. Acquisition of cross-azole tolerance and aneuploidy in Candida albicans strains evolved to posaconazole. G3 (Bethesda) 12, jkac156.
- Kwon, Y. W., Bae, J. H., Kim, S. A. and Han, N. S. 2018. Development of freeze-thaw tolerant Lactobacillus rhamnosus GG by adaptive laboratory evolution. Front. Microbiol. 9, 2781.
- LaCroix, R. A., Sandberg, T. E., O'Brien, E. J., Utrilla, J., Ebrahim, A., Guzman, G. I., Szubin, R., Palsson, B. O. and Feist, A. M. 2015. Use of adaptive laboratory evolution to discover key mutations enabling rapid growth of Escherichia coli K-12 MG1655 on glucose minimal medium. Appl. Environ. Microbiol. 81, 17-30.
- Lessmeier, L. and Wendisch, V. F. 2015. Identification of two mutations increasing the methanol tolerance of Corynebacterium glutamicum. BMC Microbiol. 15, 216.
- Lee, D. H. and Palsson, B. O. 2010. Adaptive evolution of Escherichia coli K-12 MG1655 during growth on a nonnative carbon source, L-1,2-propanediol. Appl. Environ. Microbiol. 76, 4158-4168.
- Lee, J., Saddler, J. N., Um, Y. and Woo, H. M. 2016. Adaptive evolution and metabolic engineering of a cellobiose- and xylose- negative Corynebacterium glutamicum that co-utilizes cellobiose and xylose. Microb. Cell Fact. 15, 20.
- Maeda, T., Kawada, M., Sakata, N., Kotani, H. and Furusawa, C. 2021. Laboratory evolution of Mycobacterium on agar plates for analysis of resistance acquisition and drug sensitivity profiles. Sci. Rep. 11, 15136.
- Mahr, R., Gatgens, C., Gatgens, J., Polen, T., Kalinowski, J. and Frunzke, J. 2015. Biosensor-driven adaptive laboratory evolution of l-valine production in Corynebacterium glutamicum. Metab. Eng. 32, 184-194.
- Mfon, E. I. 2024. Microbial biotechnology: Application of bacteria in various industrial processes and environment remediation. Int. J. Develop. Sustain. Environ. Manag. 4, 16-24.
- Ming, H., Xu, D., Guo, Z. and Liu, Y. 2016. Adaptive evolution of Lactobacillus casei under acidic conditions enhances multiple-stress tolerance. Food Sci. Technol. Res. 22, 331-336.
- Mladenovic, D., Pejin, J., Kocic-Tanackov, S., Djukic-Vukovic, A. and Mojovic, L. 2019. Enhanced lactic acid production by adaptive evolution of Lactobacillus paracasei on agro-industrial substrate. Appl. Biochem. Biotechnol. 187, 753-769.
- Mo, W., Wang, M., Zhan, R., Yu, Y., He, Y. and Lu, H. 2019. Kluyveromyces marxianus developing ethanol tolerance during adaptive evolution with significant improvements of multiple pathways. Biotechnol. Biofuels 12, 63.
- Mohd Azhar, S. H., Abdulla, R., Jambo, S. A., Marbawi, H., Gansau, J. A., Mohd Faik, A. A. and Rodrigues, K. F. 2017. Yeasts in sustainable bioethanol production: A review. Biochem. Biophys. Rep. 10, 52-61.
- Mundhada, H., Seoane, J. M., Schneider, K., Koza, A., Christensen, H. B., Klein, T., Phaneuf, P. V., Herrgard, M., Feist, A. M. and Nielsen, A. T. 2017. Increased production of L-serine in Escherichia coli through adaptive laboratory evolution. Metab. Eng. 39, 141-150.
- Navarrete, C., Jacobsen, I. H., Martinez, J. L. and Procentese, A. 2020. Cell factories for industrial production processes: Current issues and emerging solutions. Processes 8, 768.
- Niazi, S. K. and Magoola, M. 2023. Advances in Escherichia coli-based therapeutic protein expression: Mammalian conversion, continuous manufacturing, and cell-free production. Biologics 3, 380-401.
- Nouri, H., Azin, M. and Mousavi, S. L. 2018. Enhanced ethanol production from sugarcane bagasse hydrolysate with high content of inhibitors by an adapted Barnettozyma californica. Environ. Prog. Sustain. Energy 37, 1169-1175.
- Oide, S., Gunji, W., Moteki, Y., Yamamoto, S., Suda, M., Jojima, T., Yukawa, H. and Inui, M. 2015. Thermal and solvent stress cross-tolerance conferred to Corynebacterium glutamicum by adaptive laboratory evolution. Appl. Environ. Microbiol. 81, 2284-2298.
- Ottilie, S., Luth, M. R., Hellemann, E., Goldgof, G. M., Vigil, E., Kumar, P., Cheung, A. L., Song, M., Godinez-Macias, K. P., Carolino, K., Yang, J., Lopez, G., Abraham, M., Tarsio, M., LeBlanc, E., Whitesell, L., Schenken, J., Gunawan, F., Patel, R., Smith, J., Love, M. S., Williams, R. M., McNamara, C. W., Gerwick, W. H., Ideker, T., Suzuki, Y., Wirth, D. F., Lukens, A. K., Kane, P. M., Cowen, L. E., Durrant, J. D. and Winzeler, E. A. 2022. Adaptive laboratory evolution in S.cerevisiae highlights role of transcription factors in fungal xenobiotic resistance. Commun. Biol. 5, 1-14.
- Pena-Castro, J. M., Munoz-Paez, K. M., Robledo-Narvaez, P. N. and Vazquez-Nunez, E. 2023. Engineering the metabolic landscape of microorganisms for lignocellulosic conversion. Microorganisms 11, 2197.
- Pfeifer, E., Gatgens, C., Polen, T. and Frunzke, J. 2017. Adaptive laboratory evolution of Corynebacterium glutamicum towards higher growth rates on glucose minimal medium. Sci. Rep. 7, 16780.
- Portnoy, V. A., Bezdan, D. and Zengler, K. 2011. Adaptive laboratory evolution-harnessing the power of biology for metabolic engineering. Curr. Opin. Biotechnol. 22, 590-594.
- Prell, C., Busche, T., Ruckert, C., Nolte, L., Brandenbusch, C. and Wendisch, V. F. 2021. Adaptive laboratory evolution accelerated glutarate production by Corynebacterium glutamicum. Microb. Cell Fact. 20, 97.
- Radek, A., Tenhaef, N., Muller, M. F., Brusseler, C., Wiechert, W., Marienhagen, J., Polen, T. and Noack, S. 2017. Miniaturized and automated adaptive laboratory evolution: Evolving Corynebacterium glutamicum towards an improved D-xylose utilization. Bioresour. Technol. 245 (Pt B), 1377-1385.
- Reyes, L. H., Gomez, J. M. and Kao, K. C. 2014. Improving carotenoids production in yeast via adaptive laboratory evolution. Metab. Eng. 21, 26-33.
- Sanchez-Adria, I. E., Sanmartin, G., Prieto, J. A., Estruch, F., Fortis, E. and Randez-Gil, F. 2023. Adaptive laboratory evolution for acetic acid-tolerance matches sourdough challenges with yeast phenotypes. Microbiol. Res. 277, 127487.
- Sandberg, T. E., Pedersen, M., LaCroix, R. A., Ebrahim, A., Bonde, M., Herrgard, M. J., Palsson, B. O., Sommer, M. and Feist, A. M. 2014. Evolution of Escherichia coli to 42℃ and subsequent genetic engineering reveals adaptive mechanisms and novel mutations. Mol. Biol. Evol. 31, 2647-2662.
- Sandberg, T. E., Salazar, M. J., Weng, L. L., Palsson, B. O. and Feist, A. M. 2019. The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology. Metab. Eng. 56, 1-16.
- Schwentner, A., Feith, A., Munch, E., Busche, T., Ruckert, C., Kalinowski, J., Takors, R. and Blombach, B. 2018. Metabolic engineering to guide evolution-creating a novel mode for L-valine production with Corynebacterium glutamicum. Metab. Eng. 47, 31-41.
- Singhvi, M., Zendo, T., Gokhale, D. and Sonomoto, K. 2018. Greener L-lactic acid production through in situ extractive fermentation by an acid-tolerant Lactobacillus strain. Appl. Microbiol. Biotechnol. 102, 6425-6435.
- Stella, R. G., Wiechert, J., Noack, S. and Frunzke, J. 2019. Evolutionary engineering of Corynebacterium glutamicum. Biotechnol. J. 14, 1800444.
- Sun, Q., Liu, D. and Chen, Z. 2023. Engineering and adaptive laboratory evolution of Escherichia coli for improving methanol utilization based on a hybrid methanol assimilation pathway. Front. Bioeng. Biotechnol. 10, 1089639.
- Takeno, S., Murata, N., Kura, M., Takasaki, M., Hayashi, M. and Ikeda, M. 2018. The accD3 gene for mycolic acid biosynthesis as a target for improving fatty acid production by fatty acid-producing Corynebacterium glutamicum strains. Appl. Microbiol. Biotechnol. 102, 10603-10612.
- Takeno, S., Takasaki, M., Urabayashi, A., Mimura, A., Muramatsu, T., Mitsuhashi, S. and Ikeda, M. 2013. Development of fatty acid-producing Corynebacterium glutamicum strains. Appl. Environ. Microbiol. 79, 6776-6783.
- Tian, X., Liu, X., Zhang, Y., Chen, Y., Hang, H., Chu, J. and Zhuang, Y. 2021. Metabolic engineering coupled with adaptive evolution strategies for the efficient production of high-quality L-lactic acid by Lactobacillus paracasei. Bioresour. Technol. 323, 124549.
- Wang, J., Dong, X., Shao, Y., Guo, H., Pan, L., Hui, W., Kwok, L. Y., Zhang, H. and Zhang, W. 2017. Genome adaptive evolution of Lactobacillus casei under long-term antibiotic selection pressures. BMC Genomics 18, 320.
- Wang, G., Li, Q., Zhang, Z., Yin, X., Wang, B. and Yang, X. 2023. Recent progress in adaptive laboratory evolution of industrial microorganisms. J. Ind. Microbiol. Biotechnol. 50, kuac023.
- Wang, X., Khushk, I., Xiao, Y., Gao, Q. and Bao, J. 2018. Tolerance improvement of Corynebacterium glutamicum on lignocellulose derived inhibitors by adaptive evolution. Appl. Microbiol Biotechnol. 102, 377-388.
- Wang, Y., Fan, L., Tuyishime, P., Liu, J., Zhang, K., Gao, N., Zhang, Z., Ni, X., Feng, J., Yuan, Q., Ma, H., Zheng, P., Sun, J. and Ma, Y. 2020. Adaptive laboratory evolution enhances methanol tolerance and conversion in engineered Corynebacterium glutamicum. Commun. Biol. 3, 1-15.
- Wang, Z., Liu, J., Chen, L., Zeng, A. P., Solem, C. and Jensen, P. R. 2018. Alterations in the transcription factors GntR1 and RamA enhance the growth and central metabolism of Corynebacterium glutamicum. Metab. Eng. 48, 1-12.
- Wang, Z., Zhou, L., Lu, M., Zhang, Y., Perveen, S., Zhou, H., Wen, Z., Xu, Z. and Jin, M. 2021. Adaptive laboratory evolution of Yarrowia lipolytica improves ferulic acid tolerance. Appl. Microbiol. Biotechnol. 105, 1745-1758.
- Wright, J., Bellissimi, E., de Hulster, E., Wagner, A., Pronk, J. T. and van Maris, A. J. 2011. Batch and continuous culture-based selection strategies for acetic acid tolerance in xylose-fermenting Saccharomyces cerevisiae. FEMS Yeast Res. 11, 299-306.
- Wu, Y., Jameel, A., Xing, X. H. and Zhang, C. 2022. Advanced strategies and tools to facilitate and streamline microbial adaptive laboratory evolution. Trends Biotechnol. 40, 38-59.
- Yao, L., Jia, Y., Zhang, Q., Zheng, X., Yang, H., Dai, J. and Chen, X. 2024. Adaptive laboratory evolution to obtain furfural tolerant Saccharomyces cerevisiae for bioethanol production and the underlying mechanism. Front. Microbiol. 14, 1333777.
- Zhang, H., Zhang, P., Wu, T. and Ruan, H. 2023. Bioethanol production based on Saccharomyces cerevisiae: Opportunities and challenges. Fermentation 9, 709.
- Zhang, J., Wu, C., Du, G. and Chen, J. 2012. Enhanced acid tolerance in Lactobacillus casei by adaptive evolution and compared stress response during acid stress. Biotechnol. Bioproc. Eng. 17, 283-289.
- Zhang, Q., Wu, D., Lin, Y., Wang, X., Kong, H. and Tanaka, S. 2015. Substrate and product inhibition on yeast performance in ethanol fermentation. Energy Fuels 29, 1019-1027.
- Zhao, J., Xu, L., Wang, Y., Zhao, X., Wang, J., Garza, E., Manow, R. and Zhou, S. 2013. Homofermentative production of optically pure L-lactic acid from xylose by genetically engineered Escherichia coli B. Microb. Cell Fact. 12, 57.
- Zheng, Y., Kong, S., Luo, S., Chen, C., Cui, Z., Sun, X., Chen, T. and Wang, Z. 2022. Improving furfural tolerance of Escherichia coli by integrating adaptive laboratory evolution with CRISPR-enabled trackable genome engineering (CREATE). ACS Sustain. Chem. Eng. 10, 2318-2330.