DOI QR코드

DOI QR Code

Nonlinear Model Predictive Control (NMPC) based shared autonomy for bilateral teleoperation in CFETR Remote Handling

  • Jun Zhang (Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences) ;
  • Xuanchen Zhang (Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences) ;
  • Yong Cheng (Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences) ;
  • Yang Cheng (Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences) ;
  • Qiong Zhang (Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences) ;
  • Kun Lu (Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences)
  • 투고 : 2024.02.19
  • 심사 : 2024.06.03
  • 발행 : 2024.10.25

초록

During the process of bilateral teleoperation, operators not only need to perform complex maintenance tasks but also have to constantly monitor the safety of the operation, leading to reduced operational efficiency. Therefore, in this paper, we introduce a shared autonomous scheme that intervenes in the operator's command input when necessary, autonomously ensuring the safe operation of the manipulator by employing a rolling horizon planning controller based on Nonlinear Model Predictive Control (NMPC). This controller considers the motion boundaries and collision avoidance constraints of the manipulator, accompanied by the design of corresponding objective functions. To validate the effectiveness of the proposed method, we conduct tests on collision-free trajectory tracking and comprehensive performance with collision constraints, confirming the feasibility and excellent performance of the approach.

키워드

과제정보

The research which contributes to these results has received funding by Comprehensive Research Facility for Fusion Technology Program of China under Contract No. 2018-000052-73-01-001228 and The Postdoctoral Fellowship Program of CPSF with Grant No. GZC20232717 and The CASHIPS Director's Fund with Grant No. YZJJ2024QN17. The authors would like to express gratitude to all the members of the CFETR RH team.

참고문헌

  1. R. Buckingham, A. Loving, Remote-handling challenges in fusion research and beyond, Nat. Phys. 12 (2016) 391-393. 
  2. Y. Song, J. Li, Y. Wan, Y. Liu, X. Wang, B. Wan, P. Fu, P. Weng, S. Wu, X. Duan, Q. Yang, K. Feng, Q. Li, M. Ye, G. Zhuang, Y. Liang, X. Gao, C. Chen, H. Wang, G. Zheng, Y. Xu, T. Qian, V. Chan, B. Xiao, K. Lu, J. Zheng, M. Lu, D. Liu, J. Liu, Y. Wu, X. Liu, Y. Shi, B. Hou, C. Liu, J. Ge, C. Zhou, H. Ran, Q. Wang, X. Wang, S. Liu, S. Liu, D. Yao, Y. Cheng, L. Hu, C. Hu, F. Liu, G. Chen, Engineering design of the CFETR machine, Fusion Eng. Des. 183 (2022) 113247. 
  3. J. Zheng, J. Qin, K. Lu, M. Xu, X. Duan, G. Xu, J. Hu, X. Gong, Q. Zang, Z. Liu, L. Wang, R. Ding, J. Chen, P. Li, L. Xue, L. Cai, Y. Song, Recent progress in Chinese fusion research based on superconducting tokamak configuration, Innovation 3 (2022) 100269. 
  4. Y. Cheng, Y. Song, H. Wu, Y. Yang, J. Zhang, H. Pan, W. Zhao, N. Zhou, Y. Tang, Y. Zhang, S. Chen, S. Yang, Y. Cheng, H. Yao, Q. Zhang, X. Zhao, Overview of the CFETR remote handling system and the development progress, Fusion Eng. Des. 177 (2022) 113060. 
  5. T.B. Sheridan, Telerobotics, Automation, and Human Supervisory Control, MIT press, 1992. 
  6. B. Siciliano, O. Khatib, Robotics and the handbook, in: B. Siciliano, O. Khatib (Eds.), Springer Handbook of Robotics, Springer International Publishing, Cham, 2016, pp. 1-6. 
  7. Y. Li, A. Takagi, K.P. Tee, Editorial: shared control for tele-operation systems, Front. Robot. AI 9 (2022) 915187. 
  8. I. Havoutis, S. Calinon, Supervisory teleoperation with online learning and optimal control, in: 2017 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2017, pp. 1534-1540. 
  9. G. Li, Q. Li, C. Yang, Y. Su, Z. Yuan, X. Wu, The classification and new trends of shared control strategies in telerobotic systems: a survey, IEEE Trans. Haptics 16 (2023) 118-133. 
  10. D. Zhang, R. Tron, R.P. Khurshid, Haptic feedback improves human-robot agreement and user satisfaction in shared-autonomy teleoperation, in: 2021 IEEE International Conference on Robotics and Automation (ICRA), IEEE, Xi'an, China, 2021, pp. 3306-3312. 
  11. S. Sanders, Remote operations for fusion using teleoperation, Ind. Robot: Int. J. 33 (2006) 174-177. 
  12. S. Collins, J. Wilkinson, J. Thomas, Remote Handling Operator Training at JET, (n. d.). 
  13. Y.-C. Liu, N. Chopra, Semi-autonomous teleoperation in task space with redundant slave robot under communication delays, in: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2011, pp. 679-684. 
  14. R. Li, M. Cheng, R. Ding, Passivity-based bilateral shared variable impedance control for teleoperation compliant assembly, Mechatronics 95 (2023) 103057. 
  15. H. Mishra, R. Balachandran, M. De Stefano, C. Ott, A compliant partitioned shared control strategy for an orbital robot, IEEE robot, Autom. Lett. 6 (2021) 7317-7324. 
  16. S.N.F. Nahri, S. Du, B.J. Van Wyk, A review on haptic bilateral teleoperation systems, J. Intell. Rob. Syst. 104 (2022) 13. 
  17. D. Sun, Q. Liao, Asymmetric bilateral telerobotic system with shared autonomy control, IEEE Trans. Control Syst. Technol. 29 (2020) 1863-1876. 
  18. M. Selvaggio, J. Cacace, C. Pacchierotti, F. Ruggiero, P.R. Giordano, A shared-control teleoperation architecture for nonprehensile object transportation, IEEE Trans. Robot. 38 (2021) 569-583. 
  19. D.-H. Zhai, Y. Xia, Adaptive control of semi-autonomous teleoperation system with asymmetric time-varying delays and input uncertainties, IEEE Trans. Cybern. 47 (2016) 3621-3633. 
  20. J.J. Abbott, P. Marayong, A.M. Okamura, Haptic virtual fixtures for robot-assisted manipulation, in: S. Thrun, R. Brooks, H. Durrant-Whyte (Eds.), Robotics Research, Springer, Berlin, Heidelberg, 2007, pp. 49-64. 
  21. L.B. Rosenberg, Virtual fixtures: perceptual tools for telerobotic manipulation, in: Proceedings of IEEE Virtual Reality Annual International Symposium, IEEE, Seattle, WA, USA, 1993, pp. 76-82. 
  22. M. Zolotas, M. Wonsick, P. Long, T. Padir, Motion polytopes in virtual reality for shared control in remote manipulation applications, Front. Robot. AI 8 (2021) 730433. 
  23. A. Gottardi, S. Tortora, E. Tosello, E. Menegatti, Shared control in robot teleoperation with improved potential fields, IEEE Trans. Human-Mach. Syst. 52 (2022) 410-422. 
  24. M. Ewerton, O. Arenz, J. Peters, Assisted teleoperation in changing environments with a mixture of virtual guides, Adv. Robot. 34 (2020) 1157-1170. 
  25. P. Malysz, S. Sirouspour, A task-space weighting matrix approach to semiautonomous teleoperation control, in: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2011, pp. 645-652. 
  26. T. Osa, S. Uchida, N. Sugita, M. Mitsuishi, Hybrid rate-admittance control with force reflection for safe teleoperated surgery, IEEE ASME Trans. Mechatron. 20 (2015) 2379-2390. 
  27. M. Laghi, L. Raiano, F. Amadio, F. Rollo, A. Zunino, A. Ajoudani, A target-guided telemanipulation architecture for assisted grasping, IEEE Rob. Autom. Lett. 7 (2022) 8759-8766. 
  28. S. Luo, M. Cheng, R. Ding, F. Wang, B. Xu, B. Chen, Human-robot shared control based on locally weighted intent prediction for a teleoperated hydraulic manipulator system, IEEE ASME Trans. Mechatron. 27 (2022) 4462-4474. 
  29. M. Wang, J. Luo, U. Walter, A non-linear model predictive controller with obstacle avoidance for a space robot, Adv. Space Res. 57 (2016) 1737-1746. 
  30. Kinematics, in: B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo (Eds.), Robotics: Modelling, Planning and Control, Springer, London, 2009, pp. 39-103. 
  31. J. Sola, Quaternion Kinematics for the Error-State KF, (n.d.). 
  32. A.A. Ghavifekr, A.R. Ghiasi, M.A. Badamchizadeh, Discrete-time control of bilateral teleoperation systems: a review, Robotica 36 (2018) 552-569. 
  33. X. Zhang, Y. Yang, H. Pan, Y. Cheng, Y. Song, An efficient NMPC-based multi-task control toolkit for remote handling applications, Fusion Eng. Des. 187 (2023) 113377.