DOI QR코드

DOI QR Code

Development of a general framework of resonance self-shielding treatment for broad-spectrum reactor lattice physics calculation

  • Jinchao Zhang (Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University) ;
  • Qian Zhang (Laboratory for Advanced Nuclear Energy Theory and Applications, Zhejiang Institute of Modern Physics, Department of Physics, Zhejiang University) ;
  • Hang Zou (Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology) ;
  • Jialei Yu (Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University) ;
  • Wei Cao (Laboratory for Advanced Nuclear Energy Theory and Applications, Zhejiang Institute of Modern Physics, Department of Physics, Zhejiang University) ;
  • Shifu Wu (Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University) ;
  • Shuai Qin (Laboratory for Advanced Nuclear Energy Theory and Applications, Zhejiang Institute of Modern Physics, Department of Physics, Zhejiang University) ;
  • Qiang Zhao (Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University) ;
  • Erez Gilad (The Unit of Nuclear Engineering, Ben-Gurion University of the Negev)
  • Received : 2024.01.24
  • Accepted : 2024.05.29
  • Published : 2024.10.25

Abstract

Some core designs integrate high-enriched fuel and moderator materials to enhance neutron utilization. This combination results in a broad spectrum within the system, posing challenges in resonance calculation. This paper introduces a general framework to realize resonance self-shielding treatment in broad-spectrum fuel lattice problems. The framework consists of three components. First, a new energy group structure is devised to support resonance calculation in the entire energy range and capture spectral transition and thermalization effects during eigenvalue calculation. Second, the subgroup method based on narrow approximation is selected as a universal method to perform resonance calculation. Finally, transport equations for each fissionable region are solved for neutron flux to collapse the fission spectrum. The proposed method is verified against fast, intermediate, and thermal spectrum pin cell problems and an assembly problem featuring a fast-thermal coupled spectrum. Numerical results affirm the accuracy of the proposed method in handling these scenarios, with eigenvalue errors below 154 pcm for pin cell problems and 106 pcm for the assembly problem. The verification results revealed that the proposed method enables accurate resonance self-shielding treatment for broad-spectrum problems.

Keywords

Acknowledgement

This work is supported by the National Natural Science Foundation of China grant [12105063], the project of Young Talents of China National Nuclear Corporation and the Science and Technology on Reactor System Design Technology Laboratory grant [K909002-05-FWHT-WU-20234160].

References

  1. H.C. Lee, H.S. Lim, T.Y. Han, S. Cerba, A neutronic feasibility study on a small LEU fueled reactor for space applications, Ann. Nucl. Energy 77 (2015) 35-46, https://doi.org/10.1016/j.anucene.2014.10.015. 
  2. R. Avery, Coupled fast-thermal power breeder, Nucl. Sci. Eng. 3 (2) (1958) 129-144, https://doi.org/10.13182/NSE58-A25455. 
  3. P. Ros, P. Leconte, P. Blaise, H.D. de Speville, M. Maillot, Fast-thermal coupled cores in zero power reactors: a demonstration of feasibility and pertinence for the ZEPHYR project, Ann. Nucl. Energy 110 (2017) 290-305, https://doi.org/10.1016/j.anucene.2017.06.019. 
  4. G. Youinou, P. Henslee, M. Salvatores, G. Palmiotti, R. Wigeland, D. Hill, C. Davis, S. Hayes, J. Bumgardner, P. Finck, VCTR: a versatile coupled test reactor concept, United States (2016), https://doi.org/10.2172/1468965. 
  5. L. de H. Mencarini, J.C. King, Fuel geometry options for a moderated low-enriched uranium kilowatt-class space nuclear reactor, Nucl. Eng. Des. 340 (2018) 122-132, https://doi.org/10.1016/j.nucengdes.2018.09.017. 
  6. L. Wang, D. Lu, L. Yao, H. Xiang, C. Zhao, Study on temperature feedback effect of supercritical CO2-cooled reactor, Front. Energy Res. 9 (2021) 764906, https://doi.org/10.3389/fenrg.2021.764906. 
  7. M.D. DeHart, J. Ortensi, V.M. Laboure, NEAMS Problem Draft (FY2020 Assessment) (No. INL/MIS-21-62472), Idaho National Lab. (INL), Idaho Falls, ID (United States), 2020, https://doi.org/10.2172/1778904. 
  8. B.J. Toppel, H. Henryson II, C.G. Stenberg, ETOE-2/MC2-2/SDX multigroup cross-section processing, in: MIILIIGROUP NUCLEAR CROSS-SECTION PROCESSING PROCEEDINGS OF A SEMINAR-WORKSHOP, OAK RIDGE, TENNESSEE March, 1978, October, p. 38, 14-16, 1978, https://www.osti.gov/servlets/purl/6449335#page=49. 
  9. C. Lee, W.S. Yang, MC2-3: multigroup cross section generation code for fast reactor analysis, Nucl. Sci. Eng. 187 (3) (2017) 268-290, https://doi.org/10.1080/00295639.2017.1320893. 
  10. T. Park, C.-S. Lin, W.S. Yang, A moderated target design for minor actinide transmutation in sodium-cooled fast reactor, Ann. Nucl. Energy 98 (2016) 178-190, https://doi.org/10.1016/j.anucene.2016.08.003. 
  11. B.K. Jeon, W.S. Yang, Y.S. Jung, C.H. Lee, Extension of MC2-3 for generation of multigroup cross sections in thermal energy range, in: Proceedings of M&C 2017 Conference, Jeju, Korea, 2017, April. https://www.kns.org/files/int_paper/paper/MC2017_2017_6/P252S06-01YangWS.pdf. 
  12. T. Tone, A numerical study of heterogeneity effects in fast reactor critical assemblies, J. Nucl. Sci. Technol. 12 (8) (1975) 467-481, https://doi.org/10.1080/18811248.1975.9733139. 
  13. I.I. Bondarenko (Ed.), Group Constants for Nuclear Reactor Calculations, Consultants Bureau Enterprises Inc., New York, 1964. 
  14. Y. Zheng, X. Du, Z. Xu, S. Zhou, Y. Liu, C. Wan, L. Xu, SARAX: a new code for fast reactor analysis part I: methods, Nucl. Eng. Des. 340 (2018) 421-430, https://doi.org/10.1016/j.nucengdes.2018.10.008. 
  15. L. Wei, Y. Zheng, X. Du, H. Wu, Extension of SARAX code system for reactors with intermediate spectrum, Nucl. Eng. Des. 370 (2020) 110883, https://doi.org/10.1016/j.nucengdes.2020.110883. 
  16. M.N. Nikolaev, A.A. Ignatov, N.V. Isaev, V.F. Khokhlov, The method of subgroups for considering the resonance structure of cross sections in neutron calculations, Sov. Atom. Energy 30 (5) (1971) 528-533, https://doi.org/10.1007/BF01408755. 
  17. G. Rimpault, Algorithmic Features of the ECCO Cell Code for Treating Heterogeneous Fast Reactor Subassemblies (No. CONF-950420-), American Nuclear Society, Inc., La Grange Park, IL (United States), 1995. https://www.osti.gov/biblio/459204. 
  18. Z. Liu, Q. He, T. Zu, L. Cao, H. Wu, Q. Zhang, The pseudo-resonant-nuclide subgroup method based global-local self-shielding calculation scheme, J. Nucl. Sci. Technol. 55 (2) (2018) 217-228, https://doi.org/10.1080/00223131.2017.1394232. 
  19. S. Stimpson, Y. Liu, B. Collins, K. Clarno, A lumped parameter method of characteristics approach and multigroup kernels applied to the subgroup self-shielding calculation in MPACT, Nucl. Eng. Technol. 49 (6) (2017) 1240-1249, https://doi.org/10.1016/j.net.2017.07.006. 
  20. L. Mao, I. Zmijarevic, R. Sanchez, Resonance self-shielding methods for fast reactor calculations-comparison of a new Tone's method with the subgroup method in APOLLO3®, Nucl. Sci. Eng. 188 (1) (2017) 15-32, https://doi.org/10.1080/00295639.2017.1332890. 
  21. L. Mao, I. Zmijarevic, A new Tone's method in APOLLO3® and its application to fast and thermal reactor calculations, Nucl. Eng. Technol. 49 (6) (2017) 1269-1286, https://doi.org/10.1016/j.net.2017.08.002. 
  22. P.K. Romano, N.E. Horelik, B.R. Herman, A.G. Nelson, B. Forget, K. Smith, OpenMC: a state-of-the-art Monte Carlo code for research and development, Ann. Nucl. Energy 82 (2015) 90-97, https://doi.org/10.1016/j.anucene.2014.07.048. 
  23. A. H'ebert, Applied Reactor Physics. Presses Inter Polytechnique, 2009. 
  24. D.E. Cullen, Calculation of Probability Table Parameters to Include Intermediate Resonance Self-Shielding (No. UCRL-79761; CONF-771109-8). California Univ, Lawrence Livermore Lab, Livermore (USA), 1977. https://www.osti.gov/biblio/5460394. 
  25. T. Takeda, H. Fujimoto, K. Sengoku, S. Shiroya, H. Unesaki, K. Kanda, Application of multiband method to KUCA tight-pitch lattice analysis, J. Nucl. Sci. Technol. 28 (9) (1991) 863-869, https://doi.org/10.1080/18811248.1991.9731440. 
  26. R.E. MacFarlane, D.W. Muir, The NJOY nuclear data processing system Version 91. United States. https://doi.org/10.2172/10115999, 1994. 
  27. R. Stamm'ler, HELIOS methods, Studsvik Scandpower (2008). 
  28. Y.I. Chang, P.J. Finck, C. Grandy, J. Cahalan, L. Deitrich, F. Dunn, D. Fallin, M. Farmer, T. Fanning, T. Kim, L. Krajtl, S. Lomperski, A. Moisseytsev, Y. Momozaki, J. Sienicki, Y. Park, Y. Tang, C. Reed, C. Tzanos, S. Wiedmeyer, W. Yang, Y. Chikazawa, JAEA, Advanced Burner Test Reactor Preconceptual Design Report, United States, 2008, https://doi.org/10.2172/946035. 
  29. M. Taube, W. Heer, Reactor with very low fission product inventory (No. EIR-411), Eidgenoessisches Inst. fuer Reaktorforschung (1980). https://inis.iaea.org/search/search.aspx?orig_q=RN:14802902. 
  30. A. Yamamoto, M. Tabuchi, N. Sugimura, T. Ushio, M. Mori, Derivation of optimum polar angle quadrature set for the method of characteristics based on approximation error for the Bickley function, J. Nucl. Sci. Technol. 44 (2) (2007) 129-136. 
  31. Z. Wu, D. Lin, D. Zhong, The design features of the HTR-10, Nucl. Eng. Des. 218 (1-3) (2002) 25-32, https://doi.org/10.1016/S0029-5493(02)00182-6. 
  32. M.T. Simnad, The U-ZrHx alloy: its properties and use in TRIGA fuel, Nucl. Eng. Des. 64 (3) (1981) 403-422, https://doi.org/10.1016/0029-5493(81)90135-7. 
  33. A.T. Godfrey, VERA core physics benchmark progression problem specifications, CASL-U-2012-0131-004 793 (2013). https://corephysics.com/docs/CASL-U-2012-0131-004.pdf. 
  34. A. Yamamoto, T. Ikehara, T. Ito, E. Saji, Benchmark problem suite for reactor physics study of LWR next generation fuels, J. Nucl. Sci. Technol. 39 (8) (2002) 900-912, https://doi.org/10.1080/18811248.2002.9715275.