Acknowledgement
This work is supported by the National Natural Science Foundation of China grant [12105063], the project of Young Talents of China National Nuclear Corporation and the Science and Technology on Reactor System Design Technology Laboratory grant [K909002-05-FWHT-WU-20234160].
References
- H.C. Lee, H.S. Lim, T.Y. Han, S. Cerba, A neutronic feasibility study on a small LEU fueled reactor for space applications, Ann. Nucl. Energy 77 (2015) 35-46, https://doi.org/10.1016/j.anucene.2014.10.015.
- R. Avery, Coupled fast-thermal power breeder, Nucl. Sci. Eng. 3 (2) (1958) 129-144, https://doi.org/10.13182/NSE58-A25455.
- P. Ros, P. Leconte, P. Blaise, H.D. de Speville, M. Maillot, Fast-thermal coupled cores in zero power reactors: a demonstration of feasibility and pertinence for the ZEPHYR project, Ann. Nucl. Energy 110 (2017) 290-305, https://doi.org/10.1016/j.anucene.2017.06.019.
- G. Youinou, P. Henslee, M. Salvatores, G. Palmiotti, R. Wigeland, D. Hill, C. Davis, S. Hayes, J. Bumgardner, P. Finck, VCTR: a versatile coupled test reactor concept, United States (2016), https://doi.org/10.2172/1468965.
- L. de H. Mencarini, J.C. King, Fuel geometry options for a moderated low-enriched uranium kilowatt-class space nuclear reactor, Nucl. Eng. Des. 340 (2018) 122-132, https://doi.org/10.1016/j.nucengdes.2018.09.017.
- L. Wang, D. Lu, L. Yao, H. Xiang, C. Zhao, Study on temperature feedback effect of supercritical CO2-cooled reactor, Front. Energy Res. 9 (2021) 764906, https://doi.org/10.3389/fenrg.2021.764906.
- M.D. DeHart, J. Ortensi, V.M. Laboure, NEAMS Problem Draft (FY2020 Assessment) (No. INL/MIS-21-62472), Idaho National Lab. (INL), Idaho Falls, ID (United States), 2020, https://doi.org/10.2172/1778904.
- B.J. Toppel, H. Henryson II, C.G. Stenberg, ETOE-2/MC2-2/SDX multigroup cross-section processing, in: MIILIIGROUP NUCLEAR CROSS-SECTION PROCESSING PROCEEDINGS OF A SEMINAR-WORKSHOP, OAK RIDGE, TENNESSEE March, 1978, October, p. 38, 14-16, 1978, https://www.osti.gov/servlets/purl/6449335#page=49.
- C. Lee, W.S. Yang, MC2-3: multigroup cross section generation code for fast reactor analysis, Nucl. Sci. Eng. 187 (3) (2017) 268-290, https://doi.org/10.1080/00295639.2017.1320893.
- T. Park, C.-S. Lin, W.S. Yang, A moderated target design for minor actinide transmutation in sodium-cooled fast reactor, Ann. Nucl. Energy 98 (2016) 178-190, https://doi.org/10.1016/j.anucene.2016.08.003.
- B.K. Jeon, W.S. Yang, Y.S. Jung, C.H. Lee, Extension of MC2-3 for generation of multigroup cross sections in thermal energy range, in: Proceedings of M&C 2017 Conference, Jeju, Korea, 2017, April. https://www.kns.org/files/int_paper/paper/MC2017_2017_6/P252S06-01YangWS.pdf.
- T. Tone, A numerical study of heterogeneity effects in fast reactor critical assemblies, J. Nucl. Sci. Technol. 12 (8) (1975) 467-481, https://doi.org/10.1080/18811248.1975.9733139.
- I.I. Bondarenko (Ed.), Group Constants for Nuclear Reactor Calculations, Consultants Bureau Enterprises Inc., New York, 1964.
- Y. Zheng, X. Du, Z. Xu, S. Zhou, Y. Liu, C. Wan, L. Xu, SARAX: a new code for fast reactor analysis part I: methods, Nucl. Eng. Des. 340 (2018) 421-430, https://doi.org/10.1016/j.nucengdes.2018.10.008.
- L. Wei, Y. Zheng, X. Du, H. Wu, Extension of SARAX code system for reactors with intermediate spectrum, Nucl. Eng. Des. 370 (2020) 110883, https://doi.org/10.1016/j.nucengdes.2020.110883.
- M.N. Nikolaev, A.A. Ignatov, N.V. Isaev, V.F. Khokhlov, The method of subgroups for considering the resonance structure of cross sections in neutron calculations, Sov. Atom. Energy 30 (5) (1971) 528-533, https://doi.org/10.1007/BF01408755.
- G. Rimpault, Algorithmic Features of the ECCO Cell Code for Treating Heterogeneous Fast Reactor Subassemblies (No. CONF-950420-), American Nuclear Society, Inc., La Grange Park, IL (United States), 1995. https://www.osti.gov/biblio/459204.
- Z. Liu, Q. He, T. Zu, L. Cao, H. Wu, Q. Zhang, The pseudo-resonant-nuclide subgroup method based global-local self-shielding calculation scheme, J. Nucl. Sci. Technol. 55 (2) (2018) 217-228, https://doi.org/10.1080/00223131.2017.1394232.
- S. Stimpson, Y. Liu, B. Collins, K. Clarno, A lumped parameter method of characteristics approach and multigroup kernels applied to the subgroup self-shielding calculation in MPACT, Nucl. Eng. Technol. 49 (6) (2017) 1240-1249, https://doi.org/10.1016/j.net.2017.07.006.
- L. Mao, I. Zmijarevic, R. Sanchez, Resonance self-shielding methods for fast reactor calculations-comparison of a new Tone's method with the subgroup method in APOLLO3®, Nucl. Sci. Eng. 188 (1) (2017) 15-32, https://doi.org/10.1080/00295639.2017.1332890.
- L. Mao, I. Zmijarevic, A new Tone's method in APOLLO3® and its application to fast and thermal reactor calculations, Nucl. Eng. Technol. 49 (6) (2017) 1269-1286, https://doi.org/10.1016/j.net.2017.08.002.
- P.K. Romano, N.E. Horelik, B.R. Herman, A.G. Nelson, B. Forget, K. Smith, OpenMC: a state-of-the-art Monte Carlo code for research and development, Ann. Nucl. Energy 82 (2015) 90-97, https://doi.org/10.1016/j.anucene.2014.07.048.
- A. H'ebert, Applied Reactor Physics. Presses Inter Polytechnique, 2009.
- D.E. Cullen, Calculation of Probability Table Parameters to Include Intermediate Resonance Self-Shielding (No. UCRL-79761; CONF-771109-8). California Univ, Lawrence Livermore Lab, Livermore (USA), 1977. https://www.osti.gov/biblio/5460394.
- T. Takeda, H. Fujimoto, K. Sengoku, S. Shiroya, H. Unesaki, K. Kanda, Application of multiband method to KUCA tight-pitch lattice analysis, J. Nucl. Sci. Technol. 28 (9) (1991) 863-869, https://doi.org/10.1080/18811248.1991.9731440.
- R.E. MacFarlane, D.W. Muir, The NJOY nuclear data processing system Version 91. United States. https://doi.org/10.2172/10115999, 1994.
- R. Stamm'ler, HELIOS methods, Studsvik Scandpower (2008).
- Y.I. Chang, P.J. Finck, C. Grandy, J. Cahalan, L. Deitrich, F. Dunn, D. Fallin, M. Farmer, T. Fanning, T. Kim, L. Krajtl, S. Lomperski, A. Moisseytsev, Y. Momozaki, J. Sienicki, Y. Park, Y. Tang, C. Reed, C. Tzanos, S. Wiedmeyer, W. Yang, Y. Chikazawa, JAEA, Advanced Burner Test Reactor Preconceptual Design Report, United States, 2008, https://doi.org/10.2172/946035.
- M. Taube, W. Heer, Reactor with very low fission product inventory (No. EIR-411), Eidgenoessisches Inst. fuer Reaktorforschung (1980). https://inis.iaea.org/search/search.aspx?orig_q=RN:14802902.
- A. Yamamoto, M. Tabuchi, N. Sugimura, T. Ushio, M. Mori, Derivation of optimum polar angle quadrature set for the method of characteristics based on approximation error for the Bickley function, J. Nucl. Sci. Technol. 44 (2) (2007) 129-136.
- Z. Wu, D. Lin, D. Zhong, The design features of the HTR-10, Nucl. Eng. Des. 218 (1-3) (2002) 25-32, https://doi.org/10.1016/S0029-5493(02)00182-6.
- M.T. Simnad, The U-ZrHx alloy: its properties and use in TRIGA fuel, Nucl. Eng. Des. 64 (3) (1981) 403-422, https://doi.org/10.1016/0029-5493(81)90135-7.
- A.T. Godfrey, VERA core physics benchmark progression problem specifications, CASL-U-2012-0131-004 793 (2013). https://corephysics.com/docs/CASL-U-2012-0131-004.pdf.
- A. Yamamoto, T. Ikehara, T. Ito, E. Saji, Benchmark problem suite for reactor physics study of LWR next generation fuels, J. Nucl. Sci. Technol. 39 (8) (2002) 900-912, https://doi.org/10.1080/18811248.2002.9715275.