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A hybrid approach of partially applying BDD for seismic PSA quantification 
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A B S T R A C T   

The binary decision diagram (BDD) method provides a means to calculate the exact probability of a fault tree, but 
cannot solve large fault trees for nuclear power plant PSAs. However, the BDD method can be used as a sup
plementary means to increase the accuracy of PSA quantification, especially for a seismic PSA which includes 
many non-rare events. 

Since it is difficult to solve a large PSA model using BDD method, several approaches have been developed that 
partially apply the BDD technique to small-sized branches of a large PSA model. This paper proposes an approach 
of partially applying BDD technique to large-sized branches. The results from the pilot application to a seismic 
PSA model shows that the partial BDD approach of this paper provides a relatively accurate way to quantify each 
sequence as well as the overall core damage in a seismic PSA model.   

1. Introduction 

A typical probabilistic safety assessment (PSA) quantification is 
performed as follows:  

1. Calculate minimal cut sets (MCS) of the fault tree for the PSA model 
(where the negate corresponding to a success branch is processed by 
’delete term approximation’, and the unimportant cut sets are 
truncated)  

2. Calculate the probability using ’rare event approximation’ (REA) or 
’minimal cut upper bound’ (MCUB) method from the obtained 
minimal cut sets 

This PSA quantification method produces relatively accurate results 
for internal event PSAs, but the quantification error becomes large for 
seismic PSAs with many non-rare events (probabilities greater than 
approximately 0.1). 

The sum-of-disjoint-product (SDP) technique is a useful tool for 
calculating the exact probability of a fault tree [1,2]. The binary decision 
diagram (BDD) technique can be used to transform a fault tree into SDP 
form (which is called as BDD logic in this paper). 

The previous traditional seismic PSA uses an approach to quantify a 
small-sized seismic initiator event tree (SIET), that models important 
seismic failures, using the BDD method [3,4] and to pass only the 
resulting values to the next scenario, secondary seismic event trees 
(SSET). Recently, seismic PSA methodology has shifted toward inte
grating and analyzing both SIET and SSET. To increase the 

quantification accuracy for the integrated seismic PSA model, tech
niques have been developed to partially introduce BDD method. 

However, since it is difficult to solve a large PSA model using BDD 
technique, several approaches to partially apply the BDD technique to a 
large PSA model have been used. Kim and Kim [5] presents insights for 
an approach that reduces quantification errors by converting a success 
branch into SDP form, which is introduced as a negate-down approach in 
FTREX [6]. Lim [7] describes a technique for converting important parts 
of a seismic PSA into BDD logic, combining them with the remaining 
parts, and then solving them using the typical PSA quantification 
method. The basic idea of these two approaches is to solve small-sized 
branches using BDD technique, and to solve the rest using the typical 
PSA quantification method. In some cases, a technique of converting the 
calculated cut sets into BDD logic can be used to reduce quantification 
errors [8]. Monte Carlo methods [9,10] are good tools to quantify 
high-probability PSA models, such as seismic PSA, with reasonable ac
curacy. But, it does not produce minimal cut sets required for PSA, so it 
is used as a supplementary means to verify the quantification results of 
seismic PSA. 

In this paper we extend approaches of Lim, Kim and Kim and pro
poses an approach of utilizing the BDD technique even for large-sized 
branches in a seismic PSA. Section 2 presents the proposed approach, 
Section 3 shows the pilot application results of the proposed method, 
and Section 4 provides a summary. 
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2. Proposed hybrid approach to incorporate partial BDD 

A typical seismic PSA model consists of a SIET, which models the 
initial scenario after an earthquake occurs, and SSETs, which model the 
operation of the safety systems, as shown in Fig. 1. Each branch of an 
event tree is modeled as a fault tree. Important seismic events are mainly 
modeled in the SIET. Therefore, the small-sized SIET is solved by BDD 
method, and large-sized SSET is quantified by the typical PSA quanti
fication method [5]. 

This paper presents a hybrid approach of applying the BDD tech
nique to such large-sized branches. The hybrid approach proposed in 
this paper are as follows, and detailed information is given in sections 
2.1 and 2.2 below.  

- Step A. Small-sized branches in SIET are converted into BDD logic 
(section 2.1).  

- Step B. BDD technique is partially applied to large-sized branches in 
SSET (section 2.2).  

- Step C. After replacing the branches with fault trees corresponding to 
BDD logic, the typical PSA quantification method is used. 

2.1. Approach for a small-sized branch 

A small-sized branch is converted to BDD logic. All failure branches 
and success branches in SIET are replaced with fault trees corresponding 
to BDD logic. Fig. 2 illustrates an example of replacing a failure branch 
SE-LSSB and a success branch SE-LSSB-NEG (=SE–LSSB, the negate of 

Fig. 1. Typical plant response model for seismic PSA.  

Fig. 2. An example of BDD conversion for a small-sized branch.  
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the failure branch) with BDD logic. 

2.2. Approach for a large-sized branch 

2.2.1. Basic approach for a large-sized branch 
For a large-sized branch, only important parts are converted to BDD 

logic. If the important part in the failure branch Y1 is F, Y1 is separated 
into F and Y: 

Y1 → F + Y (1)  

where  

- F is an important part for the branch from a quantification 
perspective.  

- Y is the rest of Y1 with F removed. 

If Y1 is converted into the BDD logic focusing on a key part F, it 
becomes as follows: 

Y1= F+Y → F + F ∗ Y (2) 

To increase the quantification accuracy, we convert F and F into BDD 
logic FB and FB, respectively, which are important parts from a quanti
fication perspective. Then, the failure branch Y1 and success branch Y1 
can be converted as shown in Fig. 3. (We simply call this approach the 
‘partial BDD approach’ in this paper.) 

FB and FB represents the BDD logic in the SDP form. For the con
verted model, a typical PSA quantification method is used. For example, 
the negate Y is processed using ’delete term approximation’. 

2.2.2. Finding the important part for a branch 
We need to select an important part F for a large-sized branch 

carefully:  

- The analyst may prepare it based on the analyst’s judgment, or 

Fig. 3. Partial BDD approach for a large-sized branch.  

Fig. 4. An example of Partial BDD conversion for a large-sized branch.  
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- The best way is to select the top cut sets after calculating the minimal 
cut sets of the branch (maybe 95–99 % cut sets, or those with a value 
of 0.1 or higher).  

- The size of F should be small to be easily solved by BDD method. 

2.2.3. Removing the important part from the original branch 
If we want to remove F from the failure branch Y1 in order to get Y, 

we need to modify the branch logic manually. This can be a time- 
consuming task. 

Fortunately, instead of using Y where F is removed from Y1, we can 
get the same result by using the original branch Y1 as is. If we use Y1 
instead of Y, we get an extra FB ∗ F that becomes null. The proof and 
example for FB ∗ F = 0 are given in Appendix. 

Y1 → FB + FB ∗ Y → FB + FB ∗ Y1= FB + FB ∗ (F+Y)

= FB + FB ∗ Y + FB ∗ F = FB + FB ∗ Y (3) 

Y1 can be also used instead of Y for the success branch Y1, where FB ∗

F becomes FB. The proof and example for FB ∗ F = FB are given in 
Appendix. 

Y1= FB ∗ Y → FB ∗ Y1= FB ∗ (F + Y)= FB ∗ F ∗ Y = FB ∗ Y (4)  

Thus, we can select any one from two approaches:  

- Approach 1) use the branch model with selected part F removed  
■ Y1→FB + FB ∗ Y , Y1→FB ∗ Y (5)  

- Approach 2) use the branch model as is  
■ Y1→FB + FB ∗ Y1, Y1→FB ∗ Y1 (6) 

2.2.4. An example for a large-sized branch 
Fig. 4 shows an example of preparing and replacing the logic of the 

failure branch GAF-P-FAIL (Y1) and the success branch GAF-P-NEG (Y1) 
by applying the partial BDD approach. MVO-S and OPH-S are important 
cut sets in the original failure branch called GAF-P. The original logic of 
the failure branch GAF-P is used for Y as is. 

3. Pilot application to a seismic PSA 

The partial BDD approach proposed in this paper is tested for a pilot 
seismic PSA model. The seismic PSA model consists of one SIET and two 
SSETs, and contains 3807 gates and 3165 basic events. Major seismic 
failures are modeled in the SIET, which has small branch sizes and is 
easily converted into BDD logic. The branch of SSET contains seismic 
failures and is large in size, making it difficult to solve with BDD method. 
Therefore, it is processed using the partial BDD approach proposed in 
this paper. 

With this seismic PSA model, calculations are performed for two 
cases: PGA = 1.2247g (high probability of seismic failure) and PGA =
0.6124g (moderate probability of seismic failure). The conditional core 
damage probability (CCDP) of each sequence is calculated using the 
proposed approach. Since there is no way to calculate the exact value of 
each sequence, the CCDP of each sequence is estimated using the Monte 
Carlo method using a sufficiently large sample number of 109 and 
compared with the approach proposed in this paper. 

Table 1 
Pilot application of partial BDD approach to a seismic PSA (high PGA of 
1.2247g).  

Sequence MC(n =
1e9(1)) 

SD 
Ratio(2) 

SIET- 
bdd 

Ratio(3) SSET- 
pbdd 

Ratio(4) 

SLEP-1! 2.34E-01 0.02 % 2.34E- 
01 

1 2.34E- 
01 

1 

SSLOCA- 
1! 

3.57E-02 0.05 % 3.57E- 
02 

1 3.57E- 
02 

1 

SSTRUC- 
1! 

6.83E-01 0.01 % 6.83E- 
01 

1 6.83E- 
01 

1 

SLOOP-2! 3.25E-07 23.62 % 4.69E- 
07 

1.443 3.28E- 
07 

1.010 

SLOOP-4! 3.30E-08 60.70 % 1.57E- 
07 

4.767 3.41E- 
08 

1.034 

SLOOP-5! 3.88E-03 0.08 % 1.04E- 
02 

2.678 3.92E- 
03 

1.011 

SLOOP-6! 1.06E-03 0.33 % 2.01E- 
03 

1.905 1.07E- 
03 

1.012 

SLOOP-7! 3.46E-03 0.22 % 5.21E- 
03 

1.507 3.50E- 
03 

1.012 

SLOOP-8! 2.19E-03 0.18 % 2.54E- 
03 

1.158 2.22E- 
03 

1.012 

SLOOP-9! 5.49E-04 0.54 % 5.49E- 
04 

0.999 5.49E- 
04 

0.999 

SSSLB-3! 2.10E-04 0.70 % 5.11E- 
04 

2.433 2.14E- 
04 

1.019 

SSSLB-4! 5.70E-05 1.52 % 9.89E- 
05 

1.734 5.82E- 
05 

1.021 

SSSLB-5! 1.87E-04 0.78 % 2.56E- 
04 

1.369 1.91E- 
04 

1.019 

SSSLB-6! 1.18E-04 0.84 % 1.25E- 
04 

1.054 1.21E- 
04 

1.021 

SSSLB-7! 6.25E-06 3.82 % 6.21E- 
06 

0.994 6.21E- 
06 

0.994 

SSSLB-8! 9.01E-06 4.32 % 8.99E- 
06 

0.998 8.99E- 
06 

0.998 

Sum 9.64E-01 0.00 % 9.74E- 
01 

1.01 9.64E- 
01 

1 

Note. 
1 )1.0e-3 represents 1.0 × 10− 3. 
2 )SD Ratio is calculated by dividing the standard deviation of MC(n = 1e9) by 

MC(n = 1e9). 
3 )The ratio is calculated by dividing SIET-bdd by MC(n = 1e9). 
4 )The ratio is calculated by dividing SSET-pbdd by MC(n = 1e9). 

Table 2 
Pilot application of partial BDD approach to a seismic PSA (moderate PGA of 
0.6124g).  

Sequence MC(n =
1e9(1)) 

SD 
Ratio(2) 

SIET- 
bdd 

Ratio(3) SSET- 
pbdd 

Ratio(4) 

SLEP-1! 5.54E-02 0.01 % 5.54E- 
02 

1 5.54E- 
02 

1 

SSLOCA- 
1! 

1.72E-02 0.02 % 1.72E- 
02 

1 1.72E- 
02 

1 

SSTRUC- 
1! 

3.72E-02 0.01 % 3.72E- 
02 

1 3.72E- 
02 

1 

SLOOP-2! 8.00E-06 1.16 % 8.08E- 
06 

1.01 7.97E- 
06 

0.996 

SLOOP-4! 1.02E-07 36.63 % 1.20E- 
07 

1.179 1.04E- 
07 

1.024 

SLOOP-5! 5.91E-04 0.31 % 6.60E- 
04 

1.117 5.94E- 
04 

1.006 

SLOOP-6! 1.17E-04 0.83 % 1.27E- 
04 

1.085 1.17E- 
04 

0.998 

SLOOP-7! 2.73E-04 0.45 % 2.91E- 
04 

1.067 2.72E- 
04 

0.999 

SLOOP-8! 6.16E-04 0.39 % 6.25E- 
04 

1.015 6.17E- 
04 

1.001 

SLOOP-9! 1.43E-04 0.70 % 1.44E- 
04 

1.002 1.44E- 
04 

1.002 

SSSLB-3! 2.44E-06 7.56 % 2.63E- 
06 

1.08 2.38E- 
06 

0.978 

SSSLB-4! 4.55E-07 14.70 % 5.06E- 
07 

1.112 4.68E- 
07 

1.029 

SSSLB-5! 1.14E-06 6.71 % 1.16E- 
06 

1.021 1.09E- 
06 

0.960 

SSSLB-6! 2.38E-06 6.26 % 2.50E- 
06 

1.049 2.47E- 
06 

1.040 

SSSLB-7! 3.94E-07 20.45 % 3.85E- 
07 

0.977 3.85E- 
07 

0.977 

SSSLB-8! 8.00E-09 129.13 
% 

8.47E- 
09 

1.059 8.47E- 
09 

1.059 

Sum 1.12E-01 0.00 % 1.12E- 
01 

1.001 1.12E- 
01 

1  
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The results are given in Tables 1 and 2. Among the sequences, SLEP- 
1, SSLOCA-1, and SSTRUCT-1 are SIET sequences that are solved using 
the BDD method, and the rest are SSET sequences that are difficult to 
solve with BDD, so the partial BDD approach is applied. 

The results are summarized as follows, and it can be seen that the 
SSET-pbdd case, corresponding to the approach proposed in this paper, 
provides fairly accurate results.  

- MC (n = 1e9): Calculate using Monte Carlo method. The number of 
samples is 1e9. SD Ratio (the standard deviation of Monte Carlo 
method) shows that CCDP of 1e-5 or higher is calculated fairly 
accurately by Monte Carlo method.  

- SIET-bdd: Converts the SIET to BDD, and calculates the rest using the 
typical PSA quantification method. The errors for SSET sequences are 
very large. For high PGA case, the failure probabilities of several 
components are beyond 0.1. CCDP is calculated 4 times larger for the 
SLOOP-4! sequence. For moderate PGA case, the failure probabilities 
of components are around 0.04 or less (which is much smaller than 
that for high PGA case). The maximum error is about 1.18 times for 
SLOOP-4! sequence.  

- SSET-pbdd: Convert the SIET to BDD, and process SSET using partial 
BDD approach. The difference of SSET sequences to Monte Carlo 
method are less than 3.4 % for high PGA case, and 6 % for moderate 
PGA case. The results of the Monte Carlo method have large de
viations for sequences with small CCDPs, so the difference between 
the SSET-pbdd and the Monte Carlo method does not necessarily 
mean an error in the SSET-pbdd approach. 

Note that the REA method should be applied to the calculated min
imal cut sets. Since the cut sets contain many negate events due to the 
use of the SDP, using the MCUB method may lead to underestimated 
results. 

4. Summary 

The BDD method provides a means to reduce quantification errors 
for seismic PSAs which have many non-rare events. Recently, methods 
to improve seismic PSA accuracy by converting small-sized branches to 
BDD have been developed and used. 

This paper proposes an approach of partially applying BDD tech
nique to large-sized branches. The partial BDD approach of this paper 
provides a relatively accurate way to quantify seismic PSA. The pilot 
application to a seismic PSA shows that the quantification error can be 
greatly reduced. 

After replacing the branches with fault trees corresponding to BDD 
logic, the typical PSA quantification method is used. Therefore, other 
than BDD conversion, there is also the advantage that existing PSA 
analysis software can be used as is. 
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Appendix. Proof of FB ∗ F = 0 and F ∗ FB = FB 

A1. Proof of FB ∗ F = 0 

Before verifying FB ∗ F = 0, we need to verify CxCx
B = 0. Suppose x-th cut set Cx consists of the multiplication of M events. 

Cx = E1 E2 E3… EM =
∏M

j=1
Ej,where Ej is the j − th event in the cut set Cx (A1)  

Cx, the negate of Cx, is expressed as follows: 

Cx = E1 + E2 + E3 + … + EM (A2)  

Cx
B, the SDP form of Cx, becomes: 

Cx
B =E1 + E1E2 + E1E2E3 + … + E1E2E3…EM (A3) 

The k-th term of Cx
B and Cx are expressed: 

k − th term of Cx
B =Ek

∏

j<k
Ej (A4)  

Cx = Ek

∏

j∕=k
Ek (A5) 

The multiplication of Cx and k-th term of Cx
B becomes 0 because it includes the multiplication of Ek and Ek as follows: 

(

Ek

∏

j∕=k
Ek

)(

Ek

∏

j<k
Ej

)

=0 (A6)  

Thus, CxCx
B becomes 0: 

CxCx
B =(E1 E2 E3… EM)(E1 + E1E2 + E1E2E3 +…+E1E2E3…EM)=0 (A7) 
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Suppose F consists of N minimal cut sets: 

F=C1 + C2 + C3 + … + CN =
∑N

i=1
Ci,where Ci is the i − th cut set (A8)  

F, the negate of F, is expressed as follows: 

F=C1 C2 C3… CN (A9)  

FB , the SDP form of F, becomes: 

FB =C1
B C2

B C3
B… CN

B (A10) 

The multiplication of k-th term of F and FB becomes 0 because CxCx
B = 0 as follows: 

Ck

(

Ck
B
∏

i∕=k
Ci

B

)

=0 (A11)  

Thus, F ∗ FB becomes 0: 

F ∗ FB =(C1 +C2 +C3 +…+CN)
(

C1
BC2

B C3
B… CN

B)= 0 (A12) 

Let me show an example: 

F=AB + AC  

F=(AB + AC)=AB AC=(A+B)(A+C)=A + BC  

FB =A + ABC  

F ∗ FB =(AB+AC)(A+ABC)= 0 (A13)  

A2. Proof of F ∗ FB = FB 

Before verifying F ∗ FB = FB, we need to verify Cx ∗ Cx
B = Cx

B. 
Cx and Cx

B are as follows as in Eqs. A2 and A3: 

Cx = E1 + E2 + E3 + … + EM (A14)  

Cx
B =E1 + E1E2 + E1E2E3 + … + E1E2E3…EM (A15) 

Suppose we multiply each term of Cx to Cx
B. 

E1 Cx
B =E1(E1 +E1E2 + E1E2E3 +…+E1E2E3…EM)= E1 (A16)  

E2 Cx
B =E2 (E1 +E1E2 + E1E2E3 +…+E1E2E3…EM)= E2 E1 +E1E2 → E1E2,

where E2 E1 is the superset of E1 in Eq. A16, and is subsumed. (A17) 

E3 Cx
B =E3(E1 +E1E2 + E1E2E3 +…+E1E2E3…EM)

= E3 E1 +E3E1E2 + E1E2E3 → E1E2E3  

Where E3 E1 and E3E1E2 are subsumed by E1 and E1E2, respectively. (A18) 

EM Cx
B =EM(E1 + E1E2 +E1E2E3 +…+ E1E2E3…EM)

= EM E1 +EM E1E2 + EM E1E2E3 +…+E1E2E3…EM→ E1E2E3…EM (A19) 

The k-th term of Cx multiplied by the preceding terms than k-th term in Cx
B are superset of others and are subsumed. Terms multiplied by the next 

terms than k-th term in Cx
B becomes 0. Only k-th term of Cx

B remains. The multiplication of k-th term of Cx and Cx
B becomes k-th term of Cx

B. Thus, the 
multiplication of Cx and Cx

B becomes Cx
B: 

Cx ∗ Cx
B =(E1 + E2 + E3 +…+ EM)(E1 +E1E2 + E1E2E3 +…+E1E2E3…EM)

= E1 + E1E2 + E1E2E3 + … + E1E2E3…EM = Cx
B (A20) 

F and FB are as follows:. 

F=C1 C2…CN =
∏

(Ci) (A21) 
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FB =C1
B C2

B…CN
B =
∏(

Ci
B) (A22) 

The multiplication of F and FB becomes FB as follows:. 

F ∗ FB =(C1 C2 … CN)
(
C1

B C2
B …CN

B)=
∏(

CiCi
B)=

∏(
Ci

B)= FB,

where CiCi
B =Ci

B (A23) 

Let me show an example: 

F=AB + AC  

F=(AB + AC)=AB AC=(A+B)(A+C)=A + BC  

FB =A + ABC  

F ∗ FB =(AB+AC)(A+ABC)= 0 (A24)  

F ∗ FB =(A+BC)(A+ABC)= (A+AABC)+ (ABC+ABC)=A+ABC= FB (A25)  
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