과제정보
This study was supported by a research fund from the Chosun University (2020).
참고문헌
- N.S.M. Nasir, M.K.A.A. Razab, S. Mamat, M. Iqbal, Review on welding residual stress, ARPN J. Eng. Appl. Sci. 11 (9) (2016) 6166-6175.
- K.S. Lee, W. Kim, J.G. Lee, Assessment of possibility of primary water stress corrosion cracking occurrence based on residual stress analysis in pressurizer safety nozzle of nuclear power plant, Nucl. Eng. Technol. 44 (3) (2012) 343-354.
- P. Scott, M.C. Meunier, Materials Reliability Program: Review of Stress Corrosion Cracking of Alloys 182 and 82 in PWR Primary Water Service (MRP-220), EPRI Palo Alto CA 1015427, 2007.
- N. Gubeljak, J. Predan, R. Pippan, M. Oblak, Effect of residual stresses on the fatigue crack propagation in welded joints, J. ASTM Int. (JAI) 2 (3) (2005) 281-298.
- J.S. Kim, Investigation on the studies for welding residual stresses in nuclear components, Trans. KPVP 12 (1) (2016) 30-40.
- M.G. Na, J.W. Kim, D.H. Lim, Prediction of residual stress for dissimilar metals welding at nuclear power plants using fuzzy neural network models, Nucl. Eng. Technol. 39 (4) (2007) 337-348.
- Y.D. Koo, K.H. Yoo, M.G. Na, Estimation of residual stress in welding of dissimilar metals at nuclear power plants using cascaded support vector regression, Nucl. Eng. Technol. 49 (4) (2017) 817-824.
- T. Takagi, M. Sugeno, Fuzzy identification of systems and its applications to modeling and control, IEEE Trans. Systems, Man, Cybern SMC-15 (1) (1985) 116-132.
- N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: a simple way to prevent neural networks from overfitting, J. Mach. Learn. Res. 15 (1) (2014) 1929-1958.
- H.S. Jo, Y.D. Koo, J.H. Park, S.W. Oh, C.H. Kim, M.G. Na, Prediction of golden time for recovering SISs using deep fuzzy neural networks with rule-dropout, Nucl. Eng. Technol. 53 (12) (2021) 4014-4021.
- J. McCall, Genetic algorithms for modelling and optimization, J. Comput. Appl. Math. 184 (1) (2005) 205-222.
- W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, F.E. Alsaadi, A survey of deep neural network architectures and their applications, Neurocomputing 234 (2017) 11-26.
- P.J. Werbos, Backpropagation through time: what it does and how to do it, Proc. IEEE 78 (10) (1990) 1550-1560.
- P. Liashchynskyi, P. Liashchynskyi, Grid Search, Random Search, Genetic Algorithm: a Big Comparison for NAS, 2019 arXiv preprint arXiv:1912.06059.
- S.L. Chiu, Fuzzy model identification based on cluster estimation, J. Intell. Fuzzy Syst. 2 (3) (1994) 267-278.