DOI QR코드

DOI QR Code

Noise reduction in low-dose positron emission tomography with adaptive parameter estimation in sinogram domain

  • Kyu Bom Kim (Department of Radiation Convergence Engineering, College of Health Science, Yonsei University) ;
  • Yeonkyeong Kim (Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine) ;
  • Kyuseok Kim (Department of Biomedical Engineering, Eulji University) ;
  • Su Hwan Lee (Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine)
  • Received : 2024.03.17
  • Accepted : 2024.05.14
  • Published : 2024.10.25

Abstract

Noise reduction in low-dose positron emission tomography (PET) is a well-researched topic aimed at reducing patient radiation doses and improving diagnosis. Software-based noise reduction mainly improves the contrast between regions by reducing the variation of the acquired image. However, it should be performed under appropriate parameters to reduce discrimination. We propose a method that derives optimal noise-reduction parameters using the multi-scale structural similarity index measure and visual information fidelity, which are metrics for image quality assessment. Simulation and experimental studies demonstrated the viability of the proposed algorithm. The contrast-to-noise ratio value of the denoised reconstruction slice, which was used as the optimal parameter, increased approximately three times compared to that of the low-dose slice while preserving the resolution. The results indicate that the proposed method successfully predicted the parameters according to the noise-reduction algorithm and PET system conditions in the sinogram domain. The proposed algorithm should help prevent misdiagnosis and provide standardized medical images for clinical application by performing appropriate noise reduction.

Keywords

Acknowledgement

This study was supported by the Korea Medical Device Development Fund awarded by the Korean government (the Ministry of Science and ICT, the Ministry of Trade, Industry and Energy, the Ministry of Health & Welfare, the Ministry of Food and Drug Safety) (Project Number: RS-2020-KD000032), the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (RS-2023-00252863), and the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (RS2023-00239193, RS-2023-00243656).

References

  1. M.N. Wernick, J.N. Aarsvold, Emission tomography: the fundamentals of PET and SPECT. Chapter 2: Introduction to Emission Tomography, first ed., ELSEVIER, 2004. ISBN: 9780080521879.
  2. J. Tsuchiya, K. Yokoyama, K. Yamagiwa, R. Watanabe, K. Kimura, M. Kishino, C. Chan, E. Asma, U. Tateishi, Deep learning-based image quality improvement of 18F-fluorodeoxyglucose positron emission tomography: a retrospective observational study, EJNMMI Phys. 8 (1) (2021) 31, https://doi.org/10.1186/s40658-021-00377-4.
  3. A.K. Shukla, U. Kumar, Positron emission tomography: an overview, J. Med. Phys. 31 (1) (2006) 13-21, https://doi.org/10.4103/0971-6203.25665.
  4. S. Vandenberghe, E. Mikhaylova, E. D'Hoe, P. Mollet, J.S. Karp, Recent developments in time-of-flight PET, EJNMMI Phys. 3 (2016) 3, https://doi.org/10.1186/s40658-016-0138-3.
  5. P.J. Slomka, T. Pan, G. Germano, Recent advances and future progress in PET instrumentation, Semin. Nucl. Med. 46 (1) (2016) 5-19, https://doi.org/10.1053/j.semnuclmed.2015.09.006.
  6. Y.-R.J. Wang, P. Wang, L.C. Adams, N.D. Sheybani, L. Qu, A.H. Sarrami, A. J. Theruvath, S. Gatidis, T.H.Q. Zhou, A. Pribnow, A.S. Thakor, D. Rubin, H. E. Daldrup-Link, Low-count whole-body PET/MRI restoration: and evaluation of dose reduction spectrum and five state-of-the-art artificial intelligence models, Eur. J. Nucl. Med. Mol. Imag. 50 (5) (2023) 1337-1350, https://doi.org/10.1007/s00259-022-06097-w.
  7. K.K.M. Doss, J.-C. Chen, Utilizing deep learning techniques to improve image quality and noise reduction in preclinical low-dose PET images in the sonogram domain, Med. Phys. 51 (1) (2024) 209-223, https://doi.org/10.1002/mp.16830.
  8. Z. Bian, J. Huang, J. Ma, L. Lu, S. Niu, D. Zeng, Q. Feng, W. Chen, Dynamic positron emission tomography image restoration via a kinetics-induced bilateral filter, PLoS One 9 (2) (2014) e89282, https://doi.org/10.1371/journal.pone.0089282.
  9. L.I. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. Nonlinear Phenom. 60 (1-4) (1992) 259-268, https://doi.org/10.1016/0167-2789(92)90242-F.
  10. K. Dabov, A. Foi, V. Katkovnik, K. Egiazarian, Image restoration by sparse 3D transform-domain collaborative filtering, in: Proc. SPIE 6812, Image Processing: Algorithms and Systems VI, 2008 681207, https://doi.org/10.1117/12.766355, 1 March 2008.
  11. J. Dutta, R.M. Leahy, Q. Li, Non-local means denoising of dynamic PET images, PLoS One 8 (12) (2013) e81390, https://doi.org/10.1371/journal.pone.0081390.
  12. S. Peltonen, U. Tuna, E. S' anchez-Monge, U. Ruotsalainen, PET sonogram denoising by block-matching and 3D filtering, in: 2011 IEEE Nuclear Science Symposium Conference Record, 2011, https://doi.org/10.1109/NSSMIC.2011.6152568. Valencia, Spain.
  13. A. Le Pogam, H. Hanzouli, M. Hatt, C. Cheze Le Rest, D. Visvikis, Denoising of PET images by combining wavelets and curvelets for improved preservation of resolution and quantitation, Med. Image Anal. 17 (8) (2013) 877-891, https://doi.org/10.1016/j.media.2013.05.005.
  14. A. Bal, M. Banerjee, P. Sharma, M. Maitra, An efficient wavelet and curvelet-based PET image denoising technique, Med. Biol. Eng. Comput. 57 (12) (2019) 2567-2598, https://doi.org/10.1007/s11517-019-02014-w.
  15. S. Guo, Y. Sheng, L. Chai, J. Zhang, Graph filtering approach to PET image denoising, in: 2019 1st International Conference on Industrial Artificial Intelligence (IAI), 2019, https://doi.org/10.1109/ICIAI.2019.8850802. Shenyang, China.
  16. A. Sanaat, H. Arabi, I. Mainta, V. Garibotto, H. Zaidi, Projection space implementation of deep learning-guided low-dose brain PET imaging improves performance over implementation in image space, J. Nucl. Med. 61 (9) (2020) 1388-1396, https://doi.org/10.2967/jnumed.119.239327.
  17. A. Sano, T. Nishio, T. Masuda, K. Karasawa, Denoising PET images for proton therapy using a residual U-net, Biomed, Phys. Eng. Express 7 (2) (2021) 025014, https://doi.org/10.1088/2057-1976/abe33c.
  18. M. Zhu, M. Zhao, M. Yao, R. Guo, A generative adversarial network with "zero-shot" learning for positron image denoising, Sci. Rep. 13 (2023) 1051, https://doi.org/10.1038/s41598-023-28094-1.
  19. K.G. Zeimpekis, F.A. Kotasidis, M. Huellner, A. Nemirovsky, P.A. Kaufmann, V. Treyer, NEMA NU 2-2018 performance evaluation of a new generation 30-cm axial field-of-view Discovery MI PET/CT, Eur. J. Nucl. Med. Mol. Imag. 49 (9) (2022) 3023-3032, https://doi.org/10.1007/s00259-022-05751-7.
  20. T. Sartoretti, S. Skawran, A.G. Gennari, A. Maurer, A. Euler, V. Treyer, E. Sartoretti, S. Waelti, M. Schwyzer, G.K. von Schulthess, I.A. Burger, M.W. Huellner, M. Messerli, Fully automated computational measurement of noise in positron emission tomography, Eur. Radiol. (2023), https://doi.org/10.1007/s00330-023-10056-w.
  21. M. Makitalo, A. Foi, Optimal inversion of the generalized anscombe transformation for Poisson-Gaussian noise, IEEE Trans. Image Process. 22 (1) (2013) 91-103, https://doi.org/10.1109/TIP.2012.2202675.
  22. C. Riddell, R.E. Carson, J.A. Carrasuillo, S.K. Libutti, D.N. Danforth, M. Whatley, S. L. Bacharach, Noise reduction in oncology FDG PET images by iterative reconstruction: a quantitative assessment, J. Nucl. Med. 42 (9) (2001) 1316-1323. PubMed: 11535719.
  23. K. Kim, Y. Lee, Newly-designed adaptive non-blind deconvolution with structural similarity index in single-photon emission computed tomography, Nucl. Eng. Technol. 55 (2023) 4591-4596, https://doi.org/10.1016/j.net.2023.08.042.
  24. P. Wadhwa, K. Thielemans, N. Efthimiou, K. Wangerin, N. Keat, E. Emond, T. Deller, O. Bertolli, D. Deidda, G. Delso, M. Tohme, F. Jansen, R.N. Gunn, W. Hallett, C. Tsoumpas, PET image reconstruction using physical and mathematical modelling for time of flight PET-MR scanners in the STIR library, Methods 185 (1) (2021) 110-119, https://doi.org/10.1016/j.ymeth.2020.01.005.
  25. B.K. Cha, K.-H. Lee, Y. Lee, K. Kim, Optimization method to predict optimal noise reduction parameters for the non-local means algorithm based on the scintillator thickness in radiography, Sensors 23 (24) (2023) 9803, https://doi.org/10.3390/s23249803.
  26. A.A. Yahya, J. Tan, B. Su, M. Hu, Y. Wang, K. Liu, A.N. Hadi, BM3D image denoising algorithm based on an adaptive filtering, Multimed. Tool. Appl. 79 (4) (2020) 20391-20427, https://doi.org/10.1007/s11042-020-08815-8.
  27. K. Kim, Y. Lee, Block-matching and 3D filtering algorithm in X-ray image with photon counting detector using the improved K-edge subtraction method, Nucl. Eng. Technol. (2024), https://doi.org/10.1016/j.net.2024.01.013.
  28. K. Imamura, N. Kimura, F. Satou, S. Sanada, Y. Matsuda, Image denoising using non-local means for Poisson noise, in: 2016 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), 2016, https://doi.org/10.1109/ISPACS.2016.7824686. Phuket, Thailand.
  29. M. Makitalo, A. Foi, A closed-form approximation of the exact unbiased inverse of the anscombe variance-stabilizing transformation, IEEE Trans. Image Process. 20 (9) (2011) 2697-2698, https://doi.org/10.1109/TIP.2011.2121085.
  30. L.A. Shepp, Y. Vardi, Maximum likelihood reconstruction for emission tomography, IEEE Trans. Med. Imag. 1 (1982) 113-122, https://doi.org/10.1109/TMI.1982.4307558.
  31. C. Kamphuis, F.J. Beekman, Accelerated iterative transmission CT reconstruction using an ordered subsets convex algorithm, IEEE Trans. Med. Imag. 17 (1998) 1101-1105, https://doi.org/10.1109/42.746730.
  32. Z. Wang, E.P. Simoncelli, A.C. Bovik, Multiscale structural similarity for image quality assessment, in: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, https://doi.org/10.1109/ACSSC.2003.1292216. Pacific Grove, CA, USA.
  33. H.R. Sheikh, A.C. Bovik, Image information and visual quality, IEEE Trans. Signal Process. 15 (2) (2006) 430-444, https://doi.org/10.1109/TIP.2005.859378.
  34. S. Jan, G. Santin, D. Strul, S. Staelens, K. Assie, D. Autret, S. Avner, R. Barbier, M. Bardies, P.M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y.H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C.J. Groiselle, D. Guez, P.-F. Honore, S. Kerhoas-Cavata, A.S. Kirov, V. Kohli, M. Koole, M. Krieguer, D.J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M.C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F.R. Rannou, M. Rey, D.R. Schaart, C. R. Schmidtlein, L. Simon, T.Y. Song, J.-M. Vieira, D. Visvikis, R. Van de Walle, E. Wieers, C. Morel, Gate - Geant4 application for tomographic emission: a simulation toolkit for PET and SPECT, Phys. Med. Biol. 49 (19) (2004) 4543-4561, https://doi.org/10.1088/0031-9155/49/19/007.
  35. V.-V. Wettenhovi, M. Vauhkonen, V. Kolehmainen, OMEGA-open-source emission tomography software, Phys. Med. Biol. 66 (6) (2021) 065010, https://doi.org/10.1088/1361-6560/abe65f.
  36. A. Skretting, A method for on-site measurements of the effective spatial resolution in PET image volumes reconstructed with OSEM and Gaussian post-filters, Radiat. Protect. Dosim. 139 (1-3) (2010) 195-198, https://doi.org/10.1093/rpd/ncq019.
  37. C.M. Michail, G.E. Karpetas, G.P. Fountos, I.G. Valais, D. Nikolopoulos, I. S. Kandarakis, G.S. Panayiotakis, Assessment of the contrast to noise ratio in PET scanners with Monte Carlo methods, J. Phys.: Conf. Ser. 637 (2015) 012019, https://doi.org/10.1088/1742-6596/637/1/012019.
  38. E. Kang, J. Min, J. Ye, A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction, Med. Phys. 44 (10) (2017) e360-e375, https://doi.org/10.1002/mp.12344.
  39. S.-K. Kang, S.-Y. Yie, J.-S. Lee, Noise2Noise improved by trainable wavelet coefficients for PET denoising, Electronics 10 (13) (2021) 1529, https://doi.org/10.3390/electronics10131529.
  40. M.S. Tahaei, A.J. Reader, D.L. Collins, MR-guided PET image denoising, in: 2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD), 2016, https://doi.org/10.1109/NSSMIC.2016.8069564. Strasbourg, France.