Acknowledgement
The authors are grateful to Pars Isotope Company and Iran Radioactive Waste Management Company for supporting this research.
References
- P. Zuloaga, Design and development of near surface disposal facilities for radioactive waste, in: Safety of Radioactive Waste Disposal. Proceedings of an International Conference, 2006.
- H. Jnc, Project to Establish the Scientific and Technical Basis for HLW Disposal in Japan, Supporting Report I, Geological Environment in Japan, 1999. III-119-III120.
- K. Krupka, et al., Understanding variation in partition coefficient, Kd, values, in: The Kd Model, Methods of Measurement, and Application of Chemical Reaction Codes, vol. 1, US Environmental Protection Agency, Washington, DC, 1999.
- I. McKinley, J. Hadermann, Radionuclide Sorption Database for Swiss Safety Assessment, Eidgenoessisches Inst. fuer Reaktorforschung, 1984.
- T.H. Skaggs, et al., 6.4 solute transport: experimental methods, Methods Soil Anal.: Part 4 Phys. Methods 5 (2002) 1381-1402, https://doi.org/10.2136/sssabookser5.4.c57.
- P. Holtta, Radionuclide Migration in Crystalline Rock Fractures: Laboratory Study of Matrix Diffusion, 2002.
- X. Wang, X. Liu, Sorption and desorption of radioselenium on calcareous soil and its solid components studied by batch and column experiments, Appl. Radiat. Isot. 62 (1) (2005) 1-9, https://doi.org/10.1016/j.apradiso.2004.05.081.
- S. Szenknect, et al., Reactive transport of 85Sr in a chernobyl sand column: static and dynamic experiments and modeling, J. Contam. Hydrol. 76 (1-2) (2005) 139-165, https://doi.org/10.1016/j.jconhyd.2004.08.003.
- J. Xie, et al., Plutonium-239 sorption and transport on/in unsaturated sediments: comparison of batch and column experiments for determining sorption coefficients, J. Radioanal. Nucl. Chem. 296 (3) (2013) 1169-1177, https://doi.org/10.1007/s10967-012-1960-2.
- T.-H. Wang, M.-H. Li, S.-P. Teng, Bridging the gap between batch and column experiments: a case study of Cs adsorption on granite, J. Hazard Mater. 161 (1) (2009) 409-415, https://doi.org/10.1016/j.jhazmat.2008.03.112.
- I. Porro, M.E. Newman, F.M. Dunnivant, Comparison of batch and column methods for determining strontium distribution coefficients for unsaturated transport in basalt, Environ. Sci. Technol. 34 (9) (2000) 1679-1686, https://doi.org/10.1021/es9901361.
- S. Akratanakul, L. Boersma, G. Klock, Sorption processes in soils as influenced by pore water velocity: 2. Experimental results, Soil Sci. 135 (6) (1983) 331-341, https://doi.org/10.3390/w12010014.
- F. Plassard, T. Winiarski, M. Petit-Ramel, Retention and distribution of three heavy metals in a carbonated soil: comparison between batch and unsaturated column studies, J. Contam. Hydrol. 42 (2-4) (2000) 99-111, https://doi.org/10.1016/S0169-7722(99)00101-1.
- D. Miller, M. Sumner, W. Miller, A comparison of batch-and flow-generated anion adsorption isotherms, Soil Sci. Soc. Am. J. 53 (2) (1989) 373-380, https://doi.org/10.2136/sssaj1989.03615995005300020010x.
- B. Fonseca, et al., Modelling of the Cr (VI) transport in typical soils of the North of Portugal, J. Hazard Mater. 167 (1-3) (2009) 756-762, https://doi.org/10.1016/j.jhazmat.2009.01.049.
- W.D. Loveland, D.J. Morrissey, G.T. Seaborg, Modern Nuclear Chemistry, John Wiley & Sons, 2017, https://doi.org/10.1002/9781119348450.
- R. Routson, et al., Trace cobalt sorption on 21 sediment types from the hanford site, Washington, Nucl. Chem. Waste Manag. 7 (2) (1987) 73-87, https://doi.org/10.1016/0191-815X(87)90002-7.
- M.A. Hossain, et al., Characterization of local soils and study the migration behavior of radionuclide from disposal site of LILW, J. Environ. Radioact. 105 (2012) 70-75, https://doi.org/10.1016/j.jenvrad.2011.10.016.
- P. Mell, et al., Sorption of Co, Cs, Sr and I onto argillaceous rock as studied by radiotracers, J. Radioanal. Nucl. Chem. 268 (2) (2006) 405-410, https://doi.org/10.1007/s10967-006-0177-7.
- S. Hasanlou, et al., Preliminary Post Closure Safety Assessment and Pre-disposal Radiomonitoring of Anarak Near Surface Repository, 2016.
- A. Taherian, et al., Distribution coefficient of nickel on alluvium soil of Anaraknuclear repository in Iran, J. Nucl. Res. Appl. 2 (3) (2022) 34-41, https://doi.org/10.24200/jon.2022.1025.
- M.E. Sumner, Handbook of Soil Science, CRC press, 1999.
- H. Bachhuber, et al., The migration of 137Cs and 90Sr in multilayered soils: results from batch, column, and fallout investigations, Nucl. Technol. 59 (2) (1982) 291-301, https://doi.org/10.13182/NT82-A33032.
- J. Simunek, M.T. van Genuchten, M. Sejna, Development and applications of the HYDRUS and STANMOD software packages and related codes, Vadose Zone J. 7 (2) (2008) 587-600, https://doi.org/10.2136/vzj2007.0077.
- K.A. Krishnan, T. Anirudhan, Kinetic and equilibrium modelling of cobalt (II) adsorption onto bagasse pith based sulphurised activated carbon, Chem. Eng. J. 137 (2) (2008) 257-264.
- M. Dara, Z. Kazemi, M. Samadfam, A new method for determination of concentration profile in a transport column by gamma spectroscopy combined with genetic algorithm, Prog. Nucl. Energy 124 (2020) 103346, https://doi.org/10.1016/j.pnucene.2020.103346.