
  

 

• Support for this work was provided by the National Science Foundation under grant DUE 

1820998 awarded to Middle Tennessee State University, grant DUE 1821054 awarded to 

University of North Carolina at Charlotte, and grant DUE 1820967 awarded to East Carolina 

University. Any opinions, findings, and conclusions or recommendations expressed herein are 

those of the principal investigators and do not necessarily reflect the views of the National 

Science Foundation. 

• Corresponding Author: Kristen Fye, email: krfye@charlotte.edu 

J. Korean Soc. Math. Ed. Ser. D. (2024) 27(3), 267–294 

https://doi.org/10.7468/jksmed.2024.27.3.267 

 

ISSN 1226-6191 

Online ISSN 2287-9943 

 

RESEARCH ARTICLE 

 

“It’s easy. We got Desmos right here”: The role of 

mathematical action technology in positioning students as 

mathematical explorers 

 
Kristen Fye1, Samantha Fletcher2 

 
1 Doctoral Candidate, Mathematics, University of North Carolina at Charlotte 
2 Doctoral Candidate, Mathematical Sciences, Middle Tennessee State University 

 

Received: March 12, 2024 / Revised: April 12, 2024 / Accepted: August 22, 2024 

©  The Korean Society of Mathematics Education 2024 

 

 

Abstract 

 

The positive impact on student learning and continued support of mathematical action 

technology (MAT) in classrooms deems a need to better understand what teaching practices 

maximize the affordances of MATs. The purpose of this study was to better understand the 

technology-centered teacher moves that allow students the opportunity to be positioned as 

mathematical explorers and sustain mathematical authority during a MAT task. In this case 

study of a MAT task designed to leverage the power of sliders in Desmos to explore key 

characteristics of the sine function, participants were two ninth-grade students (age 14), 

who engaged with a task-based interview. By coding the transcript of the task-based 

interview, the findings identified and described the teacher's actions with the technology 

that resulted in meaningful mathematical activity for the two students. Along with teacher 

actions with the technology, evidence showed the importance of the design of the MAT 

task and the ability of students to troubleshoot the technology. Ultimately, we identified 

important considerations for teaching mathematics with technology as well as several 

technology-centered teaching moves, leaving room for the students to perform as 

mathematical explorers. Applying these research methods for future cases could help 

generalize these technology-centered teaching strategies that position students as 

mathematical explorers, thus strengthening students’ mathematics identities.  
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I. INTRODUCTION  

 
An important role of the mathematics teacher is to foster students’ positive 

mathematics identities to create an equitable mathematics learning environment (AMTE, 

2017; Gutiérrez, 2012). Further, the role of the teacher as students engage in learning 

mathematics using technology is vital for integrating the technology into the learning 

environment (Drijvers et al., 2010; Huang & Sutherland, 2022). One way to foster students’ 

mathematics identities through technology use is through the use of mathematical action 

technologies (MATs; e.g., dynamic geometry environments), which “perform 

mathematical tasks and/or respond to the user’s actions in mathematically defined ways” 

(Dick & Hollebrands, 2011, p. xii). MATs have the power to position all students as 

explorers of mathematics by mediating mathematical discourse regardless of access to 

precise language, providing multiple entry points for students, and helping students build 

powerful and personal ways of thinking about mathematics (McCulloch et al., 2021). These 

are mirrored in equitable teaching practices that provide students opportunities to analyze, 

compare, justify, and prove their mathematical findings (Aguirre et al., 2017). According 

to Su (2020), mathematical explorers can be seen as students who practice mathematical 

thinking and feel comfortable in mathematical environments that are driven by curiosity 

and the desire to understand patterns, structures, and relationships. 

The way students are positioned through teachers’ pedagogical practices has been 

shown to positively and negatively affect their learning as they develop disciplinary 

identities (e.g., mathematics identity, science identity; Bishop, 2012; Hazari et al., 2010; 

Tait-McCutcheon & Loveridge, 2016; Turner et al., 2013; Wood, 2013), suggesting 

teachers’ practices are a crucial component of identity development. We refer to the in-the-

moment enactment of teachers’ practices as positioning moves, or more simply, teacher 

moves (Harré & van Langenhove, 1991). For example, a teacher might ask students to 

justify their mathematical thinking using technology, positioning the students as the 

mathematical explorers. Pedagogical moves such as how a technology task is structured 

can also be a teacher move. For instance, a teacher might assign students to work on a 

Desmos task consisting of an information content page and then a dynamic graphing 

window to make sense of the questions that follow. Depending on the context, students 

would be positioned in different ways through the structure of the technology task, perhaps 

as mathematics learners who are confident exploring mathematical phenomena. We will 

further define positioning moves in the theoretical framing section. 

Although there has already been research done on teacher strategies that promote 

mathematical discourse, a gap exists in the research on the role of MAT tasks during 

discourse in mathematics classrooms (Huang & Sutherland, 2022). According to Huang 

and Sutherland, the “impact of interactive technology on education makes understanding 

its potential for promoting creative dialogue an important strand of research” (p. 323). They 

also called for further investigation into understanding the role of teacher moves to promote 

the use of technology artifacts jointly constructed by the teacher and the students for 

facilitating meaning-making discourse.  
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Because the teacher-student and technology-student discourse during a task has the 

potential to position students, we focused on both during this study. We investigated the 

following research questions: 

 

1. What is the role of technology in positioning students as mathematical explorers 

when engaging with mathematics action technology tasks? 

2. What specific teaching moves leverage mathematics action technology while 

position students as mathematical explorers?  

3. How are these specific teaching moves positioning students to engage in 

mathematical thinking (i.e., what are they enabling students to do?) 

 

 

II. RELATED LITERATURE 
 

Researchers have linked identity and learning to participation in social practice 

(Lave & Wenger, 1991). Teachers facilitate students’ mathematics identity development 

through their positioning moves. Specific teacher moves, which can be made to engage 

students in rich mathematical discourse, include revoicing students’ thinking, repeating 

others’ reasoning, asking students to apply their reasoning to others’ reasoning, prompting 

students for further participation, and using wait time (Chapin & Anderson, 2013; Kim & 

Yeo, 2019a, 2019b). Students have multiple, dynamic mathematics identities in any given 

moment, which are influenced by how they are positioned. For example, in a mathematics 

classroom, a student might be positioned as someone who answers questions by the teacher, 

but as a know-it-all by other students in the class. Over time, the student takes up and 

responds to the way they are positioned, influencing how their mathematics identity 

changes and develops. Several researchers have described this dynamic nature of students’ 

mathematics identities, finding that students were positioned differently from moment to 

moment (Esmonde & Langer-Osuna, 2013; Radovic et al., 2018; Wood, 2013). From 

moment to moment, students are constantly positioned through classroom discourse by the 

teacher, their peers, and themselves. The dynamic process of identity formation occurs 

through this constant positioning, as students take up how they are positioned over time. A 

thorough understanding of these ideas is useful for examining the role teachers play in 

mathematics identity formation, particularly in the context of students interacting with 

MATs. 

 

Mathematical Action Technologies 

A crucial consideration for this study is the widely accepted position of technology 

as a transformational tool in the learning and teaching of mathematics. In the U.S., the 

National Council of Teachers of Mathematics (NCTM) suggests that a high-quality 

mathematics program uses technology, specifically mathematical action tools, as an 

essential asset to “help students learn and make sense of mathematical ideas, reason 

mathematically, and communicate their mathematical thinking” (NCTM, 2014, p.78). 

Supporting this vision, the Association for Teachers of Mathematics (AMTE) has stood 
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behind the mission of mathematics teacher training programs ensuring that all mathematics 

teachers have the opportunity to gain the knowledge and practices for effectively 

integrating technology within the scope of teaching and learning mathematics (AMTE, 

2006). NCTM places significant value on the use of mathematical action technologies, 

termed by Dick and Hollebrands (2011), due to their interactive nature and affordances of 

supporting mathematical reasoning and sense-making. AMTE (2006) also recognized the 

power in use of these technologies to transform student thinking. 

Research shows MATs playing a role in students’ conceptual agency - students’ 

own responsibility for developing meaning and relationships between concepts and 

developing their own strategies to solve problems (e.g., Atabas et al., 2020; Leung, 2011). 

When conceptual agency was enacted, learners were empowered, and instruction was 

changed by engagement with dynamic technology tasks. In reverence of this research, it is 

critical that mathematics teachers examine the role of technology and surrounding teaching 

practices in support of equity to students, schools, and communities (Barlow et a., 2020; 

Gomez et al., 2021). McCulloch and colleagues (2021) encouraged making decisions so 

that mathematics action technologies are addressing inequities by positioning all students 

as explorers of mathematics. McCulloch and colleagues (2021) focused on three ways of 

positioning the student as mathematical explorers by using technology to: (1) enter a 

mathematical problem, (2) mediate mathematical discussions regardless of familiarity with 

mathematical language or dominant language, and (3) build personal and powerful ways 

of mathematical thinking.  

Studies have also detailed the complex process through which MATs become tools 

for learning (Artigue, 2002; Drijvers et al., 2010; Huang & Sutherland, 2022; Trouche, 

2004). Artigue (2002) described instrumental genesis as the process through which an 

artifact becomes an instrument. For instance, as students work through a MAT task, 

instrumental genesis would describe the process through which the task becomes a tool for 

the students’ learning. Trouche (2004) described instrumental orchestration as “the 

teacher’s intentional and systematic organization and use of the various artifacts available 

in a learning environment in a given mathematical task situation, in order to guide students’ 

instrumental genesis” (p. 214-215). There are three elements of instrumental orchestration: 

didactical configuration (Trouche, 2004), exploitation mode (Trouche, 2004), and 

didactical performance (Drijvers et al., 2010). Didactical configuration refers to the 

arrangement of the teaching setting and the artifacts involved. Exploitation mode refers to 

how the teacher utilizes the didactical configuration to meet their objectives, and didactical 

performance refers to the in-the-moment decisions taken while teaching. In a study 

characterizing the types of instrumental orchestration occurring during a technology-rich 

lesson for eighth grade students, Drijvers et al. (2010) described six orchestration types 

enacted by the teacher and the students. Huang and Sutherland (2022) also described moves 

made by both teachers and students during a MAT task, examining the role of digital 

artifacts generated during a MAT task. They described pre-service teacher pedagogical 

moves for promoting high quality mathematics discussion and identified pedagogical 

moves that either influenced discourse characteristics or instrumentally orchestrated 

opportunities for student learning as mediated by mathematical artifacts. In addition, they 
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found that different technology artifacts mediated mathematics discourse in different ways, 

which related to the features of the technology as well as the teacher moves during the 

lesson. They emphasized the important role of the teacher as students engaged in a MAT 

task, stating, “the artifact is only responsible for creating space and is not an adequate 

means in and of itself without a teacher’s pedagogical support” (p. 344-345). Another study 

found that specific instructional moves, as enacted by the teachers, during a technology 

mediated task, were able to position the students as mathematical explorers (Fletcher & 

Fye, 2022). Though the researchers found notable teacher moves present, what was not 

explored was how the teachers utilized the features of the technology in their teaching 

moves to afford students the opportunity to be positioned as mathematical explorers. 

 

 

III. THEORETICAL FRAMEWORK 
 

As a reminder, the purpose of this study was to better understand the technology-

centered teacher moves that allow students the opportunity to be positioned as 

mathematical explorers and sustain mathematical authority during a MAT task. Thus, it 

was necessary to frame our interpretation of the teachers’ moves in terms of the classroom 

discourse, the technology’s role in the discourse, and the way authority was distributed in 

the classroom. We drew from three theoretical frameworks to frame the study: the didactic 

tetrahedron (Cohen et al., 2003; Hollebrands, 2017), mathematical discourse (Sfard, 2007), 

and positioning theory (Davies & Harré, 1990; Harré & van Langenhove, 1991).  

 

The Didactic Tetrahedron 

To describe the classroom discourse, we first drew from Cohen, Raudenbush, and 

Ball’s (2003) instructional triangle model to identify and describe the different dimensions 

of classroom discourse. This model outlined mathematics teaching practices through the 

dynamic interactions between three dimensions: the teacher, students, and content. The 

didactic triangle has been employed in previous research to characterize the interactions 

between an educator, their students, and the subject matter being instructed. In our case, 

the interactions can be thought of as the teaching practices that help the students engage in 

meaningful mathematics activity. We consider meaningful mathematics activity as 

problem solving, proving, constructing arguments, communicating reasoning, connecting 

representations, modeling with mathematics, and attending to precision (NCTM, 2000, 

2014). Extending this framework, Hollebrands (2017) incorporated a fourth dimension, 

examining how technology mediates the relationships between the teacher, students, and 

mathematical tasks. (see Figure 1). We use this as a basis for our consideration of how the 

use of technology influences teaching practices, particularly in-the-moment teacher moves, 

and what the subsequent meaningful mathematical activity that results from those moves. 
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Figure 1. The didactic tetrahedron (Hollebrands, 2017) 

 

Mathematical Discourse 

Having identified and described the different dimensions involved in mathematical 

discourse, it was also necessary to define mathematical discourse and the role it plays in 

student learning. In general, for students to learn mathematics, they must modify or extend 

their discourse so that they can solve problems (Sfard, 2007). For students participating in 

mathematical discourse encompasses all communication methods used in conveying 

understanding, including spoken words, written symbols, images, as well as actions and 

gestures (NCTM, 2000). Mathematical discourse involves thinking and communicating 

about abstract objects such as equations, numerals, and models. According to Sfard (2007), 

thinking is a form of discourse, thus learners can have discourse with themselves. For 

example, a student may position themselves in the role of “dumb” in mathematics by 

mentally engaging in negative self-talk about their ability to do mathematics. As students 

engage in mathematical discourse through a communicational conflict, a difference in the 

learner’s discourse and the communication of the group, incites learning. Technology can 

facilitate communicational conflicts by providing opportunities for students and teachers 

to engage with multiple representations, collaboratively create and explore interconnected 

mathematical objects, and exercise agency in generating mathematical discourse and 

practices (Acrs et al., 2008). In using technology, Gonzalez and Herbst found “the interplay 

between speech acts, gestures and use of tools (e.g. dragging and measuring) allowed 

students to act upon diagrams and participate in classroom discourse” (2009). Thus, 

technology plays a crucial role in the facilitation of mathematical discourse. The teachers’ 

role in the discourse as students engage with technology should be to facilitate students’ 
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encounters with communicational conflicts. In other words, the teachers’ discourse moves 

should be understood in light of how they facilitate or constrain students’ participation in 

the discourse. For example, when students encounter mathematical phenomena they are 

not familiar with (e.g., a dynamic graph responds to a change in the algebraic 

representation), the teacher can ask questions to prompt students to think deeply about 

mathematics by further engaging with the technology to explore their ideas.  

 

Positioning Theory 

Because teachers’ participation in the classroom discourse inevitably facilitates or 

constrains students’ participation in the discourse, it is also necessary for us to frame how 

mathematical discourse is enacted and taken up in the classroom by the teachers and 

students. We drew from positioning theory to meet this goal. Positioning refers to 

recognizing discursive actions as social acts within storylines familiar to participants in 

discourse (Harré & van Langenhove, 1991). People are positioned when the community 

establishes the rights, duties, non-rights, and non-duties of its individual members in a 

particular storyline. In a mathematics classroom, a common storyline might be the teacher 

as the deliverer of knowledge and the student as the recipient of knowledge. For example, 

a teacher might position a student as a “knower of mathematics” by referring to the 

student’s knowledge frequently during a class. Though the teacher is traditionally 

positioned as the “expert” in common storylines like this one, they do not have to draw 

from this natural authority and can justify their ideas logically instead to help students learn. 

The teacher’s role in the discourse is to help students move out of circular discourse by 

facilitating instructionally effective conflicts, those in which students have a realistic 

communicational agreement about the leading discourse, participants’ roles, and the nature 

of the expected change in discourse. Thus, the teachers’ role is to consider how their 

discourse positions students to engage in mathematics in this way. 

People are constantly positioned through discourse during their lives in numerous 

and potentially contradictory roles and storylines. An individual making sense of these 

different ways of experiencing themselves leads to a multiplicity of selves (Davies & Harré, 

1990). According to Davies and Harré (1990), “it would be a mistake to assume that, in 

either case, positioning is necessarily intentional. One lives one’s life in terms of one’s 

ongoingly produced self, whoever might be responsible for its production (p. 48). In other 

words, positioning is a subconscious process, which is a result of having a dynamic identity. 

Both teachers and students engage in mathematical discourse, which results in everyone 

involved in the discourse being positioned in many ways over time. Applying positioning 

theory to understand teacher-student discourse enables the researcher to explain how in-

the-moment discourse facilitates individuals experiencing themselves in different ways in 

relation to familiar storylines or larger social discourses. 

From a positioning perspective, mathematics identity can be thought of as “the 

repetition of ‘performances’ in mathematics learning contexts that generates our 

recognition of ourselves in certain ways as learners of mathematics” (Darragh, 2015, p. 85). 

This performative perspective on identity originated from the work of Butler (1988, 1997), 

who described gender identity as performative. As a student performs their mathematics 
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identity, those they are interacting with are audience members that recognize and interpret 

the performance (i.e., position the student) in different ways. The idea of performance calls 

to mind the idea of a “stage” in which learners engage in mathematical discourse. To tie 

performative mathematics identity to positioning, it is important to note that an individual 

is also a member of their own audience (Darragh, 2015). As a learner does mathematics, 

they engage in significant social interactions, or social acts. The learner positions them self 

and is positioned by those in the learning environment based on how these social acts 

become relevant to known roles, storylines, or issues of access (Davies & Harré, 1990). As 

these positions persist, the learner forms a mathematics identity. For example, a student 

frequently positioned as a knower of mathematics by the teacher may eventually recognize 

themselves as a “mathematics person.” Thus, it is essential for teachers to position students 

as competent doers of mathematics for students to develop positive mathematics identities. 

Furthermore, in the context of engaging with MATs (and as described by the didactic 

tetrahedron, students’ participation in mathematics also involves their discourse with the 

technology, so technology use can be thought of as part of their performance (Fletcher & 

Fye, 2022). The teachers, students, and the technology task work synergistically to make 

up the discourse as students work through the task. 

 

 

IV. METHODS 

 

This study was a single case study of the discourse between two students and two 

teachers mediated by a Desmos task focused on key characteristics of the sine function 

(Yin, 2009). We observed student-student, student-teacher, student-self (thinking), student-

task, and task-student discourse in the video recording of the students working through the 

activity. This was an intrinsic case study because we were motivated to examine the 

recording of the students working through the task in more depth by the evidence, we 

noticed in the previous study of the technology playing a role in how the students were 

positioned (Stake, 1995). The discourse and actions of the students, teachers, and 

technology served as our representation of performative displays of enacting mathematics 

identity, thus, allowing us to find and describe how positioning was happening (Darragh, 

2015). 

This study is an extension of a prior study in which two second semester ninth-

grade students (age 14) attended an in-person after school session to engage with a task, 

part of which is shown in Figure 2, designed to leverage the power of sliders in Desmos to 

enhance and empower their learning around key characteristics of the sine function (i.e, 

amplitude, midline, and period). Both students were engaged regularly in technology-

enhanced tasks using MAT in their first and second semester of ninth grade mathematics 

and had a high comfort level with the structure of the task. As they engaged in the activity, 

we collected screen capture recordings of their work with Desmos. The students were 

encouraged to discuss with each other as they worked, and the two teachers circulated 

sometimes engaging in teacher moves to help students to reach the intended learning goal. 

The teachers participating in the study had 12 and 15 years teaching experience and have 

previously demonstrated a history of successfully developing and facilitating mathematics 
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lessons with MAT.  

 

 
Figure 2. Sine parameter task slide in Desmos 

 

The Desmos task consisted of the exploratory slide shown in Figure 2 as well as 

screens where students were given specific definitions of features of the sine function 

(amplitude, period, and midline), a supporting image for the definition, and a few questions. 

In Figure 3, you can see the task’s page focused on the period feature. These feature slides 

contained questions asking students to consider the original position of the sine function to 

begin. Then students were asked to identify the slider responsible for the changes of that 

feature and to mathematically describe how the specific sliders impact the feature. The 

intended learning outcome was for students to make accurate generalizable conjectures to 

describe the parameters a, b, and k associated with the amplitude, midline, and period, 

respectively. 

Our familiarity with the transcript and video allowed us to develop our first round 

of coding where we were trying to identify what technology centered actions (coded as tech 

actions) afforded students to engage in meaningful mathematical activity. The tech actions 

coded referred to when the discourse involved engaging or discussing the technology to 

position the students as mathematical explorers. Because mathematical discourse refers to 

communicating about abstract objects such as equations, numbers, and models, as well as 

using mathematical language, we considered the teachers’ and students’ actions with the 

technology to be a form of mathematical discourse (Sfard, 2007). The actions with the 

technology served as partners to the tech action codes, providing a subsequent code of what 

each tech action enabled students to do (coded as students enabled). In this first phase, we 

analyzed the transcript from a technology-focused lens in Atlas.ti by open coding instances 

where the affordances of the technology were highlighted through teacher direction or 

student-initiated interaction with the technology allowed some sort of meaningful 

mathematical activity. Because a difference in the students’ discourse and the teachers’ 

communication was needed to incite learning, it was important to note the students’ 

discourse with the teacher that followed specific teacher moves (Sfard, 2007).  



276 Fye & Fletcher 

 
Figure 3. Sine period feature task slide. 

 

During a discrepancy meeting for our initial codes, there were instances when 

students engaged in meaningful mathematical activity that was not preceded by a 

previously used tech action code. Therefore, additional codes for design of the technology 

and technology fixes emerged. The tech design code was used to describe the phenomena 

when the design of the task itself, rather than discourse or actions, was responsible for the 

subsequent students enabled code. The technology design code was used in instances when 

the students’ attention was focused on non-technology content within the task. We often 

applied a technology design code when referring to the embedding of pencil and paper 

features. For instance, when students referred to questions, images, or definitions within 

the task. The other code that emerged in this meeting was developed to describe the 

phenomena of teachers or students engaging in technology troubleshooting (coded as tech 

fix), which also served as a mechanic in enabling students in meaningful mathematical 

activity. The tech fix code instances were refreshing the web page and resetting the 

interactive features of the Desmos task.  

Following this discrepancy meeting, each individual researcher returned to the 

transcript and coded each technology action as enacted by the teachers or students, finding 

that all but two occurrences in the transcript were teacher technology actions. This clarified 

our focus of the second and third research questions to name and describe the teaching 

moves in the technology mediated environment and how they sustain mathematical 

authority for the students to be positioned as mathematical explorers.  

We began the second phase of this process with each researcher independently 

reading the coded data and developing short descriptions of each quotation identified by 

the tech action, tech fixes, tech design, and students enabled codes. We used these 
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descriptions to help generate descriptive codes and create a preliminary codebook in Excel 

by meeting and discussing broad themes between the codings. We applied our preliminary 

descriptive codes and built new codes as we compared our descriptions with each other to 

ensure the data could be described by the codebook. We continued comparing our 

descriptive coding to develop the remaining descriptions until all of the initial codes had a 

descriptive code for the codebook. In our third phase of coding, we used our researcher 

developed Excel spreadsheet codebook to describe the technology actions, technology 

design statements, and technology fixes (Table 1), and the opportunities for students to 

recognize themselves as mathematical explorers that followed (Table 2). An example of a 

technology action was Scaffolding Technology, which referred to the teachers’ discourse 

related to ways the technology could be manipulated to remove barriers to understanding. 

In this case, this discourse tended to refer to teachers’ verbal instructions to students to 

manipulate the technology, such as suggesting the removal of the gridlines on the graph. In 

some cases, however, we foresee a teacher might also enact this discourse move by 

physically manipulating the technology if the level of scaffolding necessary for students 

requires it. 

 
Table 1. Code descriptions: Technology-centered considerations and teaching moves 

Technology-Centered Considerations 

Task Design Description 

Explain Definition Teacher ensures understanding of words in definition 

General Task 
Design 

Student or teacher refers to or uses general structure and design of the task 
(e.g., indicating where questions are located on the page) 

Refer Definition Student or teacher refers back to definitions or visualizations embedded in the 
task 

Refer Question Student or teacher refers back to questions embedded in the task 

General Operation 
and 

Troubleshooting of 
Technology (Tech 

Fixes) 

Description 

Reload Page Student or teacher reloads or anticipates reloading web-browser when 
technology does not behave as expected 

Reset Sliders Student or teacher uses the reset sliders feature of Desmos to reset the sliders 
to their original positions 

Technology-Centered Teacher Moves 

Ability Scaffolding 
Technology 

Description Example 

Scaffolding 
Technology 

Teacher scaffolds tech 
features to eliminate 
barriers 

Teacher changes view settings, uses second tab for an 
empty graph to eliminate clutter on the screen, 
suggests using integers in exploration that make 
considering calculations easier, removes sliders for 
students to pay attention to function structure 
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Attending to 
Student Thinking 
Through Their 
Discourse & 

Actions 

Description Example 

Direct Thinking Teacher directs one 
student to another stu-
dents thinking through 
technology 

Teacher asks one student to pay attention to the other 
student’s technology actions and make judgments 
about the mathematical phenomena 

Follow-Up 
Question 

Teacher asks students 
a follow-up question, 
which builds off of 
their thinking 

Teacher restates students’ thinking and asks a 
question to move their thinking forward 

Recall Prior 
Knowledge 

Teacher asks students 
to recall prior 
knowledge 

Teacher asks students to recall function structure of a 
specific parent function 

General 
Exploration 

Teacher asks students 
to explore the task 
without prompting 
them to explore a 
specific feature 

Teacher asks students to explore the features of the 
task and talk about what they notice 

Technology-
Specific 

Questioning 
Description Example 

Generate Example Teacher asks students 
to generate an example 
with the technology 
features 

Teacher prompts students to give an example of an 
equation of a line 

Highlighting 
Features 

Teacher points out 
features of the techno-
logy 

Teacher draws students’ attention to the sliders, the 
graph, or the equation entry box to help guide their 
thinking 

Probe for 
Conjecture 

Teacher asks students 
to conjecture on gene-
ralizations 

Teacher asks students to conjecture about the general 
relationship between values in the sine function 

Probe for 
Justification 

Teacher asks students 
to justify their thinking 
with technology 

Teacher asks students to prove, show, defend and 
uphold how their thinking is validated with the 
technology explorations 

Probe for Self-
Assess 

Teacher asks students 
to self-assess their 
thinking or responses 

Teacher asks students if their conjectures or 
generalizations about mathematical phenomena are 
supported by their current explorations 

Specific 
Exploration 

Teacher encourages 
students to explore the 
task and prompts them 
to explore a specific 
feature 

Teacher asks students to test a specific slider, specific 
feature, or extend an exploration of a feature that has 
not been previously considered 

Test Specific 
Values 

Teacher asks students 
to test specific values 

Teacher asks students to test a specific value in a 
slider or pause and take note of a specific value that is 
currently being explored 
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Table 2. Code descriptions: Students enabled 

Students Enabled Description 

Access Prior 

Knowledge 

Students access and use prior knowledge to describe mathematical 

phenomena explored with the technology 

Answer Expression Students explore how to express their answers with the technology 

Better Access 

Learning Targets 

Students were able to better access the intended learning targets after 

teacher scaffolding technology 

Eliminate Answers Students eliminate a possible answer to a task question based on 

reasoning with the technology 

Justification Students justify their thinking with technology 

Learning Target 

Deductions 

Students arrive at correct deductions aligned with the learning targets 

Make Conjecture Students make conjectures or predictions about the mathematical 

phenomena being explored with the technology 

Question Generation Students generate their own questions about the mathematical 

phenomena being explored with the technology 

Self-Assess Students self-assess their thinking and are able to make adjustments in 

strategies using the technology 

Sensemaking-Task Students make sense of questions or definitions using the technology 

Sensemaking-

Thinking 

Students make sense of each other's thinking using the technology 

Student Language Students describe mathematical phenomena being explored with the 

technology using their own language 

 

During discrepancy meetings for this phase, we rectified any misaligned coding 

and discussed phenomena not covered by the codebook to generate the remaining codes in 

the codebook. We wrote shorthand versions of the codes and applied the codes to the 

transcript in Atlas.ti. Then, we made visuals for each category of codes, along with a co-

occurrence table (see Appendix) to visualize relationships between the tech actions, tech 

design, and tech fixes codes when compared to the students enabled codes. The final part 

of this phase involved the researchers grouping the teacher technology action codes, given 

in Table 1, into two different themes - technology-centered considerations and technology-

centered teaching moves - based on their proximity to the teaching versus proximity to the 
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technology. The technology-centered considerations were meant to describe the 

phenomena not necessarily related to teaching such as tech design and tech fixes codes, 

that still managed to position students. The technology-centered teaching moves category 

was used to describe the specific teaching moves that were used in relation to the 

technology. The technology-centered teaching moves included more specific groupings of 

our teacher technology codes which were identified as ability to scaffolding technology, 

attending to student thinking through their discourse and actions, and technology specific 

questioning.  

 

 

V. RESULTS 

 
Positioning students with as mathematical explorers through teacher pedagogy has 

shown to be an impactful way to strengthen the mathematics identities of students (Boaler 

& Greeno, 2000; Dunleavy, 2015; Harrell-Levy & Kerpelman, 2010; Radovic et al., 2018).  

Over time, positioning students as mathematical explorers facilitates their recognition of 

themselves as capable of doing mathematics, and as a result development of a positive 

mathematics identity. In a technology mediated environment, implementation of successful 

teacher pedagogies becomes more complex due to the nuanced nature of teaching and 

learning mathematics with mathematics action technologies (Drijvers et al., 2010) The 

findings from this study suggests that there are some key technology-centered 

considerations and teaching moves that are crucial to helping students remain mathematical 

explorers during a task that uses mathematical action technologies. Thus, we have 

structured the following narrative of our findings according to those two categories. 

 

Technology-Centered Considerations 

 There are two technology-centered considerations that presented themselves in the 

analysis and coding that were able to position students as mathematical explorers: 

troubleshooting technology and task design. Task design would be one of Trouche’s (2004) 

considerations for didactical configuration - where thoughtful selection or organization of 

the task impacts student learning outcomes.  

General Operation and Troubleshooting of Technology. In this case study, 

students and teachers anticipated ways in which the physical technology or app was no 

longer operating as expected. These were distinct from technology actions taken by the 

teachers or students or considerations related to task design because they were not tied to 

the specific task. Instead, they were technology fixes that would be helpful for users during 

any task created using the technology. An example of technology fixes we noted in the 

transcript were when the teachers or the students used the reset sliders functionality of the 

Desmos tool to reset the sliders to their original positions or when the teachers or students 

reloaded the webpage. This occurred when the Desmos activity no longer operated as the 

students and teachers expected; therefore, the students refreshed the browser to get it to 

behave in the expected manner. For instance, during the interaction below, the students 

reloaded the webpage when the browser windows were malfunctioning: 



WE’VE GOT DESMOS RIGHT HERE 281 

 

Teacher K: Looks like you're editing this in a different window 

Kei: Just uh reload the page. 

Teacher K: That’s a new one 

Xarielle: What 

Teacher K: When in doubt, huh? 

Teacher N: Yeah 

Teacher K: Alright good call 

Teacher N: You win 

Xarielle: Okay, wait where’d it go? 

Kei: It refreshed it. 

Teacher K: There it is, okay 

 

General operating considerations and anticipating troubleshooting for how the 

device behaves with the mathematics action technology in regards to operation (e.g., 

browser, applications, internet connectivity, window sizing) was evidenced to be on the 

teacher’s radar for implementation to ensure students can continue as the authority in their 

mathematical exploration. Because of this, the teachers were able to quickly explain or 

show to students how to troubleshoot the device and MAT. In this case, it was effective for 

the teachers to show hidden interactive features, such as resetting sliders, to ensure that 

students would be able to follow the instructions embedded in the task and come to intended 

mathematical conceptions.  

Task Design. We also coded actions occurring during the activity that related to 

the design of the task. The task in this study was designed to ensure that students did not 

necessarily need authority from the teachers to embark in exploration or understand goals 

of the task clearly. For instance, in this task, embedding directions, questions, images, 

definitions, along with the interactive features allowed students to refer to any slides of the 

task to ensure that the mathematical authority was sustained by the students. The teachers 

in this task frequently described the general features of the task and how it was designed, 

for instance when the teacher said, “So this is the same graph the sine function right here 

and it's telling you what the amplitude is and so this is your definition of amplitude.” We 

distinguished this code from a technology action because the teacher was not prompting 

the students to use the technology. After the teacher had modeled effective use of the 

general features of the task design, the students mirrored this strategy later in the task. 

When they moved on to a later question in the task, Xarielle said, “Okay. Now let’s do 

number 9.” Simultaneously, they each said, “How do we find the altitude [amplitude]?” 

and Kei responded, “It's easy. We got Desmos right here.” Xarielle’s ability to progress 

through the questions in the task by clicking the arrows and Kei’s response about using the 

Desmos graphing window and sliders on an earlier page to reason about the question at 

hand demonstrated their understanding of the general design of the task. 

The teachers or students also referred back to a definition or specific question in 

the task. For example, when the students were reasoning about how to find the amplitude 

of the sine function in its original position, Xarielle said, “But it don't say which one,” to 
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which Kei responded, “Look. It’s the height from the center line to the peak, or we can 

measure the height from the highest to lowest points and divide that by two.” 

We found that rather than needing a teacher to provide a definition or illustrate a 

concept, the task does this in a way that allows the students to consult the task and not the 

teachers. By defaulting to the task for these clarifications, even when questions arrive to 

the teachers, it puts the mathematical authority with the task and the students by proxy. The 

teachers never have to serve as “all-knowing” beings of the mathematics, and the students 

instead grapple with the intended mathematical concepts. Another way that the task design 

in this study preserved students' engagement as mathematical explorers was the type of 

questioning used in the task. Early in the task students were asked to perform general 

exploration of the task and later given targeted exploration. A question earlier in the task 

“What do the sliders do?” where as a later question reads “Which slider seems to alter 

amplitude of the sine function? How is the value of that slider related to the amplitude?” 

Notice the earlier question encourages general exploration and the later one provides an 

intended learning target embedded in the questioning. Students remained mathematical 

explorers due to the nature of these questions and were given opportunities to explain the 

mathematical phenomena in their own words first before trying to connect their exploration 

to intended learning outcomes. This act of allowing students to engage with mathematics 

formally and informally, is a way of leveraging multiple mathematics competencies by 

drawing upon learners' prior and current knowledge to explore and explain the world 

mathematically (Turner et al., 2013). Consistent with McCulloch et al. (2021), the teachers 

mediated the students’ mathematical discussion by pointing to particular features in the 

task as they tested their conjectures and justified their mathematical ideas in their own 

language, providing pathways for both students to reason about the sine function.  

 

Technology-Centered Teaching Moves 

In addition to important considerations centered on the technology, we also 

identified and described teaching moves that were crucial to helping Kei and Xarielle 

remain the mathematical authorities during the Desmos task. Rather than taking on the 

traditional role of “expert” as the students worked through the task, the teachers facilitated 

instructionally effective discourse with the students as they scaffolded the technology based 

on the students’ abilities to meet the learning targets, attended to students’ thinking beyond 

discussion by paying attention to technology actions performed by students, and asked 

questions that were specific to the actions with the technology. In these ways, they 

structured the students’ work through the MAT task in a way that made mathematics 

learning accessible to the students and positioned students as the mathematical explorers. 

These teacher moves serve as examples of Drijvers’ (2010) didactical performance, which 

refers to the in-the-moment actions taken while teaching with technology.  

Ability Scaffolding the Technology. We saw instances where the ability of the 

teachers to change the way the technology operates was crucial in helping the students 

uncover the intended learning outcomes. These scaffolds extended beyond the general 

troubleshooting described above and were much more teacher-centered. In this context, the 

teachers paid attention to how the mathematics action technology potentially impeded 
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students’ ability to reach the intended learning target and made suggestions to students 

about the adjustments that could be made to clarify the learning target. In our case, for 

instance, the students had correctly identified a value for the midline of the sine function, 

but there was a clear difficulty for students in coming up with a proper expression of a 

midline as a line. The students were focused on adjusting the parameters of the sine function 

to create the midline and trying to express the midline with a sine as part of the expression, 

but not understanding why the complex expression still produced zero based on their 

current knowledge. So, the teacher suggested opening up a new tab with a blank graphing 

calculator for them to do their thinking. Almost like a scratch sheet of paper, this became 

a scratch tab. The scratch tab reduced the cognitive load placed on the students by the task 

because there was no longer the clutter of the sine function and sliders. Rather, the line of 

questioning focused on creating an equation of a line that ultimately helped students 

successfully express the equation of the midline. By reducing the students’ cognitive load 

to make the complex mathematical ideas more accessible for the students, the teacher 

facilitated an opportunity for the students to perform as mathematical explorers and 

recognize themselves as successful mathematics learners. Other examples of scaffolding 

the technology included helping students adjust view settings, encouraging students to use 

values such as integers to make calculations easier, or removing sliders for students to allow 

them to closely pay attention to the structure of a function. For example, in the below 

interaction, the teacher instructed the students to use the Desmos settings to turn off the 

minor grid lines to more easily visualize the distance from the midline to the peak, or the 

amplitude, of the sine function. The scaffolding enabled both of the students to correctly 

give the value of the amplitude, and Xarielle insisted on continuing to explore the graph 

with this setting. 

 

Teacher K: Take off minor grid lines. Okay alright okay, how far apart are they? 

Give me one more go at it. 

Kei: [speaking gibberish] Which one we said, this one right here, and this one? 

Xarielle: Yes 

Kei: One, two, three 

Xarielle: Four 

Teacher K: Did you make it down to that other point, Kei? 

Xarielle: Why do you keep stopping right there? 

Kei: Okay, okay. One two three four 

Teacher K: Okay, Xarielle, you agree? 

Xarielle: Yes, I agree. I’ve been trying to… 

Teacher K: That’s why we had to...We had to convince Kei though. We had to 

convince Kei. 

Kei: No, take those off [referring to minor gridlines]. 

Xarielle: No, I need it. 

 

In this case the teachers’ abilities to note student actions with the technology as 

thinking along with their discourse helped in their decision making around in-the-moment 
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moves. The scaffolds were catered moves based on what students were demonstrating in 

understanding without taking students out of productive struggle. These can allow student 

actions with the technology to be more meaningful and clear to the student, ultimately 

allowing them to sustain mathematical authority, reach intended learning outcomes, and 

recognize themselves as mathematical explorers. 

Attending to Student Thinking Through Their Discourse & Actions. Student 

thinking can be presented in ways beyond what is spoken or written. For instance, teachers 

and students can engage in mathematical discourse centered around a student- or jointly-

created technology artifact (Huang & Sutherland, 2022). Paying attention to student 

technology moves, we saw the teachers asking students follow-up questions that built upon 

students’ thinking.  It initially presented itself as teachers asking students to discuss their 

initial understanding of the general exploration of mathematical phenomena with their own 

language and prior knowledge. For example, to introduce the Desmos task, one of the 

teachers said, “so we're going to pay attention to some of the features of that sine function 

so I want you to go to the next page and just kind of talk about what you notice.” In the 

interaction that followed, the students used their prior knowledge and experiences to 

describe the graph of the sine function in their own language: 

 

Kei: It’s curvy. 

Teacher N: Curvy 

Kei: Yeah 

Teacher N: Good. 

Xarielle: It looks like a heartbeat. Like in like the doctor thing. 

Teacher N: It looks like a heartbeat, absolutely, okay. 

  

This act of allowing students to engage with mathematics formally and informally, 

is a way of leveraging multiple mathematics competencies by drawing upon learners' prior 

and current knowledge to explore and explain the world mathematically (Turner et al., 

2013). The action of leveraging multiple mathematics competencies includes providing 

multiple entry points, allowing students with varying levels of skills to engage in with the 

problem and make meaningful contributions (Aguirre et al., 2013). In this technology task, 

we found teachers attending to not only written and verbal contributions, but paying 

attention to students' actions with the technology.  

In this case, the teachers were noticing not only what students are saying but also 

what they are carrying out with the technology in order to fully understand how they are 

thinking or why they are developing specific thinking. This was revealed in some cases 

when students arrived at unintended conclusions about the sine function characteristics.  

For instance, when Kei was counting amplitude with the cursor on the screen, the cursor 

was moving from a highlighted maximum to a highlighted minimum, but the verbal 

counting was beginning at the starting point and the ending point. Paying attention to the 

student’s action with the technology revealed that the student was not counting distance 

but rather endpoints within the vertical scale of the graph. In this instance, the teacher used 

this as an opportunity to have students consider each other’s thoughts.  
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Teacher K: Xarielle says it’s four, you say it’s three. We gotta come up to a 

conclusion. 

Kei: I’m always right. 

Teacher K: That’s your reason? You better give me a better reason than that. 

Xarielle: Wait, one, two, three, four. I got four. Do you not count that one at the 

end? 

Kei: No, look okay. Between it, so like one, two, three 

Xarielle: Oh, okay I see it now. You counting the line, I’m counting the block 

Xarielle: Okay okay you counting the lines 

Teacher K: Okay, how far apart are they? 

Xarielle: Three 

Teacher K: You guys are convinced it's three? 

Kei and Xarielle: Yes 

 

Contrarily, Xarielle was counting in a way that was mathematically accurate. Both 

students were able to verbalize and compare their strategies visually and verbally. Although 

this did actually result in the incorrect amplitude for the task, it was followed up with 

scaffolding too once the teacher recognized scale was getting in the way of achieving 

understanding.   

The teachers’ close attention to the students’ thinking based on their actions on the 

technology allowed for them to point out those moves as thinking to peer partners. Teachers 

were directing one student to another student's thinking by pointing out how the other 

student’s exploration, through the technology, was being carried out. The teachers would 

ask if one student was noticing what the other student was doing and ask them to consider 

each other’s actions as thinking, an example of asking students to apply their reasoning to 

others’ reasoning, described by several researchers as a way of facilitating mathematical 

discourse (Chapin & Anderson, 2013; Kim & Yeo, 2019a, 2019b). This teacher move 

allowed mathematical exploration to remain a focus of the students' efforts. Peers seeing 

each other’s technology moves as mathematical thinking often helped them to try and make 

sense of each other’s thinking and facilitate their own questions between each other. These 

conversations and questions being centered around the students allowed for sustained 

positioning of the students as the mathematical explorers and afforded them the opportunity 

to recognize themselves in this role over time. 

Technology Specific Questioning. When considering the teacher technology 

actions that afforded students the opportunity to be positioned as mathematical explorers 

in this case study, several technology specific questions and suggestions were evidenced. 

NCTM (2014) suggests that posing purposeful questions can assess and advance student 

sense-making when exploring mathematical relationships. Our case demonstrated several 

specific ways in which students were asked these types of questions. One of the ways was 

asking students to justify their explanations with demonstrations using the technology. 

When a student made a claim, oftentimes the teachers would ask the student to convince 

them or the other student about their claim by showing where their thinking is coming from 
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when operating the technology. In our transcript, the phrase show me appears twenty-two 

times, as well as other similar tasking words like prove or justify. As the students worked 

through the Desmos activity, the teachers probed them to justify their thinking a total of 15 

times. For example, one of the teachers said, “Can you show me on those sliders? Show 

me what you worked through and you can talk through it real quick.” Furthermore, this 

type of questioning from the teachers most often was associated with the students enabled 

code - providing justification for thinking.  In fact, the most frequently occurring 

descriptive code for what students were enabled to do by the teachers’ actions was 

justification. An example of the students justifying their thinking was,  

 

Teacher N: You're telling me the amplitude is two? 

Kei: Yes 

Teacher N: Well, how could you get that from the equation right there? 

Kei: Well, it says it right there basically. 

Xarielle: um because since the front of the parentheses. it's the… How do I explain 

that? It's…I know it's like the way it is way the way it is on the axis. So, since 

a is the amplitude of the sine wave, uh, like it like controls the y, is the y is the 

is the… it's the reflection on the y-axis.  

Kei: You basically can see it right there in the equation. 

 

We see Kei & Xarielle justifying their answer with function structure as well as 

their prior knowledge of function transformations. This is following making generalized 

conjectures during general and focused exploration of the sliders.  

Another specific type of technology-based question was when students were asked 

to demonstrate their thinking by building their own example. This did not happen 

frequently in our case, likely due to the nature of the task, but the power of students building 

their own examples truly embodies the idea of students maintaining mathematical authority 

during a task. One instance when the teacher made this move was when she said, “Put an 

equation of a line in one of those. How do you write an equation of a line? Give me an 

example of an equation of a line” to prompt students to express their knowledge of the 

location of the midline. Another type of questioning the teachers used was asking students 

to conjecture or generalize, sometimes with the additional task of self-assessing the 

conjectures through the exploration of the mathematical relationship. In this case, the 

teacher asked for conjecture about the relationship between the parameter, b, of the function 

and the period. Once student’s started making generic conjectures about the relationship, 

they were asked to check and see if their conjecture held up with values of exploration.  

 

Teacher K: So what does…. make that more generic for me so you say we can take 

the… what's the 360 represent 

Xarielle: the b 

Kei: the period 

Xarielle: I meant the period 

Teacher K: the period when we're when no transformations are applied 
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Kei: yes 

Teacher K: and we're taking that and we're doing what with it 

Kei: dividing it 

Teacher K: by what 

Kei: 4 

Teacher K: what does that four represent  

Kei: the period… the yeah period of that other one 

Teacher K: the what? 

Kei: the period 

Xarielle: the period 

Teacher K: four is the period? i thought you told me the period of that was going 

to be 90.  
 

Following this interaction, the teacher asked further prompting questions, and the 

students were enabled to generalize the relationship between the parameter b, the period, 

and the period of the sine function in its original position. 

Along with asking purposeful questions related to the technology, technology-

specific suggestions and highlighted features helped hone the students’ focus to the 

intended learning targets. For instance, when our students were testing ideas about period 

they were directed back to the b slider to specifically execute their explorations. This 

strategy was often used when general exploration did not clarify the learning targets of the 

questions being asked. In a similar way, the teachers would highlight features of the 

technology that required student manipulation such as sliders or clickable points. In one 

instance, the teacher highlighted the sliders as a useful tool for the students as they were 

manipulating the sine equation to understand how to find the amplitude, midline, and period 

from an equation. 

 

Teacher N: So go back to where your sliders are. 

Xarielle: Don’t I got to change it to two? 

Teacher N: So right now you've got a is one, b is one, and k is zero. 

Kei: That two 

Xarielle: So this has to be one because its plus one. 

Kei: Thats 4 

Xarielle: Oh lord. Oopsies. This one is two. 

Kei: And b was what? 

Xarielle: 4x 

Kei: Why didn’t you just type in an equation like that? 

Xarielle: Uhhhhh…Oh I could have did that couldn't I 

Xarielle: So, sin 

Teacher N: Rather than changing that one, sliders you can type in anything 

 

Teachers also highlighted the different representations that the manipulations 

changed based on student exploration. In the case of Kei and Xarielle’s discourse about the 
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amplitude of the sine function, when they each conjectured that a different parameter 

affected the amplitude, the teacher asked them to notice what the graph was doing in 

response to the movement of each slider. 

 

Teacher N: Okay, now move slider K to somewhere else.  

Kei: Go down. 

Xarielle: Let’s see. 

Teacher N: What’s the amplitude? 

… 

Teacher N: Why do you say A? 

Xarielle: Because, okay watch this, watch this, watch this, watch this 

Teacher N: What’s the amplitude right now? 

 

Here the teacher emphasized paying attention to the graph as the parameters of the 

function were manipulated through the sliders to help students differentiate between the 

role of parameter a and k in the sine function. In this case, Xarielle used it to help the Kei 

visualize and ultimately understand the impact of parameter a on the feature of amplitude. 

 

Discussion 

In summary, our findings demonstrated key technology-centered considerations 

and teaching moves, which helped students remain mathematical explorers as they worked 

through a MAT task.  In regard to research question one, how technology positioned 

students as mathematical explorers when engaging with MAT tasks, rarely was the MAT 

acting alone to position the students. This aligned with Huang and Sutherland’s (2022) 

suggestion that the technology’s role likely opens up opportunity for teacher moves, rather 

than acting as a positioning agent alone and suspicions that an artifact itself could facilitate 

agency. We found a few instances in our case where MAT task design, without the teacher, 

was able to position students as mathematical explorers. More often, though, teaching 

moves positioned students as mathematical explorers and contained all four components of 

the didactic tetrahedron (Hollebrands, 2017). Due to this, our research questions shifted to 

account and describe how the specific teaching moves helped Kei and Xarielle remain the 

mathematical authorities during the MAT task. Our case study revealed that technology-

centered teacher moves have the ability to position all students as explorers of mathematics.  

In regard to research questions two and three we discuss what and how specific 

teaching moves leverage mathematics action technology in order to position students as 

mathematical explorers. Troubleshooting the technology, describing the design of the task, 

and using technology-centered teacher moves helped students reach the intended learning 

outcome of understanding the effect of parameters on the graph of the sine function. The 

teachers and students troubleshooted the technology when they used the reset sliders 

functionality of the Desmos tool to reset the sliders to their original positions and when 

they reloaded the webpage. When the discourse was centered on the design of the task, the 

teachers and students referred to embedded directions, questions, images, definitions, and 

interactive features to ensure that the students were positioned as mathematical explorers. 
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In addition to important technology-centered considerations centered on the technology, 

we also identified and described teaching moves, which positioned Kei and Xarielle as the 

mathematical explorers during the Desmos task. The teachers ability-scaffolded the 

technology, attended to students’ thinking beyond discussion by paying attention to 

technology actions performed by students, and asked questions that were specific to the 

actions with the technology. Specifically, they helped students adjust view settings, 

encouraged students to use values to simplify calculations, or removed sliders for students 

to highlight a specific mathematical concept. The teachers asked students follow-up 

questions that built upon their thinking, asking students to discuss their understanding of 

mathematical phenomena using their own language and/or prior knowledge. Teachers 

directed students to examine each other’ thinking, justify their explanations with 

demonstrations using the technology, build their own examples, make conjectures or 

generalize, and self-assess through the exploration of the MAT task. They also highlighted 

useful features of the technology and the different representations that the student 

manipulations changed during the students’ exploration. The technology-centered 

considerations and teacher moves enabled students to engage with the mathematical 

concepts in a significantly diverse number of ways during a single technology task, 

including accessing prior knowledge, better accessing learning targets, eliminating answers, 

making conjectures, learning target deductions, generating questions, self-assessing, and 

sensemaking about each other’s thinking in addition to justifying their thinking using the 

technology. 

Limitations. Our title “It’s Easy. We Got Desmos Right Here” speaks to our 

limitations of this research. The participants of this study were students of a teacher who 

regularly used inquiry learning partnered with MATs, particularly Desmos. They had been 

in a classroom for several months that had developed norms and expectations that 

facilitated the richness of the data collected and observed. Students had a positive working 

relationship with each other, the technology, and the one of the two teachers present during 

data collection. Although this didn’t impede our study, it is worth noting that a recreation 

of this study may not present itself with the same results without these conditions or 

participants.  

Implications & Future Studies. Based on these findings, we believe that teachers 

do not need to be experts in designing technology tasks. Instead, they should be able to 

critically analyze tasks that incorporate technology to ensure they possess the 

characteristics described above, positioning students as mathematical explorers. With 

repeated use, teachers—and eventually students—develop expectations for how MATs 

function and learn to troubleshoot the devices or software accordingly. Teachers must be 

prepared to explicitly teach troubleshooting techniques for these technologies so that 

students can efficiently diagnose and address issues, maintaining their engagement as 

mathematical explorers. Similarly, being aware of the affordances of MATs means 

allowing space for productive struggle to facilitate meaningful mathematical discourse 

between students (Dick & Hollebrands, 2011; Acrs et al., 2008). Facilitating learning 

through MATs is a complex process requiring numerous in-the-moment teaching decisions 

(Fletcher & Fye, 2022). To sustain students’ participation as mathematical explorers, 
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teachers need to recognize students' actions and gestures with the technology as forms of 

mathematical thinking, alongside their verbal discourse (Gonzalez & Herbst, 2009). 

Teachers should provide scaffolding suggestions that remove barriers to intended learning 

targets, making students' interactions with the technology more meaningful and clear. This 

approach helps students sustain mathematical authority, achieve learning outcomes, and 

see themselves as mathematical explorers. The teaching moves paired with MATs 

described in this study serve as a starting point for replicable ways to inform teachers how 

to engage with students during a MAT task that prioritizes the ownership of the learning 

being centered on the students. We can see these teacher moves and technology 

considerations as helping students continue their mathematical explorations without being 

robbed of opportunities for their own thinking. These teacher decisions ultimately helped 

this pair of students maintain mathematical authority throughout the task. Engaging 

students in these tasks while facilitating these moves with fidelity has the potential to 

ultimately strengthen students’ mathematics identity over time. As a student is frequently 

positioned as a mathematical explorer, they may eventually recognize themself as a 

“mathematics person,” a phenomenon Darragh (2015) described as performative identity. 

In the future, researchers should carry out similar analyses across additional cases 

to determine the validity of the claims made from this case. This further exploration would 

allow for explanation of if these mathematical action technology teaching strategies re-

emerge in other cases or if new teaching moves are established that position students as 

mathematical experts. More cases could potentially allow generalizable technology-

centered teaching strategies that position students as mathematical explorers to emerge, 

thus strengthening students’ mathematics identities. We are still considering the question: 

Is the student transformation attributed to the actions of their teachers with MAT, or could 

it occur independently through their independent interaction with MAT? To explore this 

question, researchers should analyze new cases where the teacher does not interject during 

the task to see if the technology itself would be capable of sustaining positioning students 

as mathematical explorers.  
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