KYUNGPOOK Math. J. 64(2024), 505-509 https://doi.org/10.5666/KMJ.2024.64.3.505 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

A Note on Embedding Homology 3-Spheres in the 4-Sphere

Min Hoon Kim

Department of Mathematics, Ewha Womans University, Seoul, Republic of Korea 03760

e-mail: minhoonkim@ewha.ac.kr

ABSTRACT. Recently, Savk introduced the notion of a generalized Mazur manifold, which is a contractible 4-manifold obtained by attaching a 2-handle on the complement of a ribbon disk, and observed that many classical examples of homology 3-spheres bounding contractible 4-manifolds actually bound generalized Mazur manifolds. In this note, we prove that homology 3-spheres bounding generalized Mazur manifolds smoothly embed in the 4 sphere by using 5-dimensional arguments. As a consequence, we show that any homology 3-sphere obtained from the 3-sphere by Dehn surgery on a ribbon link and certain plumbed 3-manifolds smoothly embed in the 4-sphere.

1. Introduction

One simple way to produce a smooth homotopy 4-sphere is to take the double of a smooth contractible 4-manifold. It follows that the boundary of a smooth contractible 4-manifold is a homology 3-sphere which can be smoothly embedded in a smooth homotopy 4-sphere. This raises the following question on smooth embeddings of homology 3-spheres.

Question 1.1. Suppose that a homology 3-sphere Y bounds a smooth contractible 4-manifold X. Does Y smoothly embed in $S⁴$?

The special case of Question 1.1 when X has no 3-handles is implied by the Andrews-Curtis conjecture on balanced presentation of the trivial group [3] as follows: In this case, the double of X bounds a contractible, 5-dimensional 2-handlebody $X \times [0, 1]$. If the Andrews-Curtis conjecture is true (for the corresponding balanced presentation), then the handle decomposition of $X \times [0, 1]$ can be trivialized by handle slides and handle cancellations so that $X \times [0,1]$ is diffeomorphic to D^5 and hence the double of X is diffeomorphic to S^4 .

The above argument (originally due to Mazur [11]) shows that Question 1.1 holds for a homology 3-sphere Y bounding a *Mazur manifold X* (that is, if X admits a

Received April 7, 2024; accepted August 20, 2024.

²⁰²⁰ Mathematics Subject Classification: 57K40, 57R60.

Key words and phrases: Brieskorn homology 3-spheres, contractible 4-manifolds.

handle decomposition consisting of one 0, 1, 2-handles). There are several explicit examples of homology 3-spheres bounding contractible 4-manifolds including [10, 2, 4, 14, 7]. See [6, Section 2.2] for a more detailed discussion and references. Many (but not all) of these examples are Brieskorn homology 3-spheres bounding Mazur manifolds so that Question 1.1 is true for them.

Recently, Savk introduced in [5] the notion of a *generalized Mazur manifold* which is a contractible 4-manifold obtained by attaching a 2-handle on the complement of a ribbon disk and observed that many classical examples of homology 3-spheres bounding contractible 4-manifolds actually bound generalized Mazur manifolds.

In this note, we prove that homology 3-spheres bounding generalized Mazur manifolds satisfy Question 1.1 by showing that the double of a generalized Mazur manifold is diffeomorphic to $S⁴$ via 5-dimensional arguments. This might be well-known to experts but the author could not find this in the literature.

Theorem 1.2. Let M be the 0-surgery manifold of a ribbon knot K . Suppose that a homology 3-sphere Y is obtained from M by integral surgery on a knot J where the longitude of J is freely homotopic to a meridian of K in M. Then Y smoothly embeds in S^4 .

By considering the special case when J is isotopic to a meridian of K , we have the following immediate corollary of Theorem 1.2.

Corollary 1.3. Suppose that a homology 3-sphere Y is obtained from $S³$ by doing Dehn surgery along a ribbon knot K. Then Y smoothly embeds in $S⁴$.

In [10], Gordon proved that any homology 3-sphere obtained from $S³$ by doing Dehn surgery along a slice knot bounds a contractible 4-manifold. It seems to be an open question whether such a manifold smoothly embeds in $S⁴$ or not. Corollary 1.3 shows that Question 1.4 below is true if the slice-ribbon conjecture is true for knots in the 3-sphere.

Question 1.4. Suppose that a homology 3-sphere Y is obtained from S^3 by doing Dehn surgery along a slice knot. Does Y smoothly embed in $S⁴$?

Remark 1.5. The proofs of Theorem 1.2 and Corollary 1.3 in Section 2 can be extended to the multi-component version (that is, when K is a ribbon link) after making obvious changes.

In [1, Proof of Theorem A], Aguilar and Savk showed that the plumbed 3-manifold Z_n corresponding to the plumbing diagram in Figure 1 is diffeomorphic to the (-1) surgery manifold of the generalized square knot $T_{n+1,n+2}\# - T_{n+1,n+2}$ and hence bounds a contractible 4-manifold for all $n \geq 1$ where $T_{n+1,n+2}$ is the $(n+1,n+2)$ torus knot. Since $T_{n+1,n+2}$ # – $T_{n+1,n+2}$ is a ribbon knot for all n, we obtain the following corollary from Corollary 1.3 and [1, Proof of Theorem A].

Corollary 1.6. The plumbed 3-manifold Z_n corresponding to the plumbing diagram in Figure 1 smoothly embeds in S^4 for all $n \geq 2$.

FIGURE 1. The plumbing diagram of Z_n .

2. Proofs of Theorem 1.2 and Corollary 1.3

In this section, we prove Theorem 1.2 and Corollary 1.3.

Proof of Theorem 1.2. Suppose that K is a ribbon knot with a chosen ribbon disk D in D^4 . Then the complement $W = D^4 \setminus \nu(D)$ admits a handle decomposition consists of one 0-handle, n 1-handles and $(n-1)$ 2-handles and ∂W is diffeomorphic to M . The natural number n depends on the number of ribbon singularities of D . Regard J as a framed knot in M where the framing is given so that the corresponding surgery manifold of M along J is Y .

Consider a compact 4-manifold X obtained by attaching a 2-handle to W along the (framed) longitude of J. Since $\pi_1(W)$ is normally generated by the longitude of J, X is a contractible 4-manifold by Van Kampen theorem. By our construction, ∂X is obtained from $\partial W = M$ by doing surgery along J so ∂X is diffeomorphic to Y.

Since Y smoothly embeds in the double $DX = X \cup_Y -X$ of X which is the boundary of $X \times [0, 1]$, it suffices to prove that $X \times [0, 1]$ is diffeomorphic to D^5 . Note that $X \times [0, 1]$ is obtained from $W \times [0, 1]$ by attaching the 5-dimensional 2-handle along $J \times \{0\}$. Since homotopy implies isotopy in dimension 4 and $\pi_1(SO(3)) = \mathbb{Z}/2$, the diffeomorphism type of $X \times [0,1]$ only depends on the free homotopy class of J and the mod 2 reduction of the framing of J. Without loss of generality, we assume that J is a meridian of K . Consider a presentation

$$
\pi_1(X) = \langle x_1, x_2, \dots, x_n \mid r_1, r_2, \dots, r_n \rangle
$$

corresponding to the given handle decomposition of X consists of one 0-handle, n 1handles and n 2-handles. Here we choose an ordering of the generators x_1, x_2, \ldots, x_n and an ordering of the relators r_1, r_2, \ldots, r_n in such a way that

$$
\pi_1(W) = \langle x_1, x_2, \dots, x_n \mid r_1, r_2, \dots, r_{n-1} \rangle
$$

508 Min Hoon Kim

and each r_i is of the form $w_i x_i w_i^{-1} x_{i+1}^{-1}$ for some word w_i in x_1, x_2, \ldots, x_n for all $i = 1, 2, \ldots, n - 1$ (determined by a description of the chosen ribbon disk D). Hence the final relator r_n of $\pi_1(X)$ corresponds to the longitude of J which is a meridian of K, so we can assume that $r_n = x_1$. It is now straightforward to see that the corresponding balanced presentation

$$
\pi_1(X) = \langle x_1, x_2, \dots, x_n \mid w_1 x_1 w_1^{-1} x_2^{-1}, \dots w_{n-1} x_{n-1} w_{n-1}^{-1} x_n^{-1}, x_1 \rangle
$$

is Andrews-Curtis trivial. Since $X\times[0,1]$ is a contractible 5-dimensional 2-handlebody such that the corresponding balanced presentation of $\pi_1(X \times [0, 1])$ is Andrews-Curtis trivial, a typical 5-dimensional Mazur type argument shows that $X \times [0, 1]$ is diffeo-
morphic to the 5-ball D^5 (for example, see [8, Lemma 3.4]). morphic to the 5-ball D^5 (for example, see [8, Lemma 3.4]).

Remark 2.1. In the proof of Theorem 1.2, we showed that $X \times [0, 1]$ is diffeomorphic to D^5 , or equivalently, the double DX of X is diffeomorphic to S^4 . Here is an alternative way to see this which we explain briefly. As mentioned in the above, we can assume that J is a meridian of K. Then the double DX of X is either $S⁴$ or is obtained from $S⁴$ by doing Gluck twist on a 2-knot S where S is the double of the chosen ribbon disk D . Precisely speaking, we perform the Gluck twist on S when the framing of J is odd. It is well-known that the Gluck twist of $S⁴$ along a ribbon 2-knot is diffeomorphic to $S⁴$ (for example, see [12, 9, 13]). Since S is the double of a ribbon disk D in D^4 , S is a ribbon 2-knot in S^4 and hence the double DX of X is diffeomorphic to S^4 .

We noted that Corollary 1.3 is a special case of Theorem 1.2 that J is isotopic to a meridian of K. We give a detailed proof of this as follows.

Proof of Corollary 1.3. Suppose that a homology 3-sphere Y is obtained from S^3 by doing Dehn surgery along a ribbon knot K . Since Y is a homology 3-sphere, the surgery coefficient is $\frac{1}{m}$ for some integer m. Then Y is obtained from the 0-surgery manifold M of K by doing an integer surgery along a meridian of K with framing −m (see [9, pp. 163–164]). By Theorem 1.2, Y smoothly embeds in $S⁴$ \Box

Acknowledgements. The author was partly supported by Samsung Science and Technology Foundation (SSTF-BA2202-01) and the National Research Foundation grant 2021R1C1C1012939.

References

- [1] R. A. Aguilar and O. Savk. On homology planes and contractible 4-manifolds. Bull. Lond. Math. Soc., 56(6):2053–2074, 2024.
- [2] S. Akbulut and R. Kirby. Mazur manifolds. Michigan Math. J., 26(3):259–284, 1979.
- [3] J. J. Andrews and M. L. Curtis. Free groups and handlebodies. Proc. Amer. Math. Soc., 16:192–195, 1965.
- [4] A. J. Casson and J. L. Harer. Some homology lens spaces which bound rational homology balls. Pacific J. Math., 96(1):23–36, 1981.
- [5] O. Savk. Classical and new plumbed homology spheres bounding contractible manifolds and homology balls. arXiv:2012.12587, to appear in Internat. J. Math., 2024.
- [6] O. Şavk. A survey of the homology cobordism group. Bull. Amer. Math. Soc. $(N.S.), 61(1):119-157, 2024.$
- [7] H. C. Fickle. Knots, Z-homology 3-spheres and contractible 4-manifolds. Houston J. Math., 10(4):467–493, 1984.
- [8] D. Gabai, P. Naylor, and H. Schwartz. Doubles of Gluck twists: a five dimensional approach. arXiv:2307.06388, July 2023.
- [9] R. E. Gompf and A. Stipsicz. 4-manifolds and Kirby calculus, volume 20 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 1999.
- [10] C. M. Gordon. Knots, homology spheres, and contractible 4-manifolds. Topology, 14:151–172, 1975.
- [11] B. Mazur. A note on some contractible 4-manifolds. Ann. of Math. (2), 73:221– 228, 1961.
- [12] P. M. Melvin. Blowing up and down in 4-manifolds. ProQuest LLC, Ann Arbor, MI, 1977. Thesis (Ph.D.)–University of California, Berkeley.
- [13] D. Nash and A. I. Stipsicz. Gluck twist on a certain family of 2-knots. Michigan Math. J., 61(4):703–713, 2012.
- [14] R. J. Stern. Some more Brieskorn spheres which bound contractible manifolds. Notices Amer. Math. Soc., 25:A448, 1978.