DOI QR코드

DOI QR Code

Compressive Strength and Surface Morphology of Premixed and Conventional Calcium Silicate Cement in Presence of Blood Serum

  • Jaehyun Seung (Department of Pediatric Dentistry, College of Dentistry, Wonkwang University) ;
  • Seong-Jin Shin (Institute of Tissue Engineering, Dankook University) ;
  • Byounghwa Kim (Department of Pediatric Dentistry, College of Dentistry, Wonkwang University) ;
  • Ji-Myung Bae (Department of Dental Biomaterials and the Institute of Biomaterial and Implant, College of Dentistry, Wonkwang University) ;
  • Jiyoung Ra (Department of Pediatric Dentistry, College of Dentistry, Wonkwang University)
  • 투고 : 2024.08.12
  • 심사 : 2024.09.12
  • 발행 : 2024.09.30

초록

Purpose: The objective of this study was to investigate the impact of blood contamination on the compressive strength and surface morphology of both conventional and newly developed calcium silicate cements (CSCs). Materials and Methods: Compressive strengths of Endocem MTA Premixed Regular (EMPR) and ProRoot MTA (PMTA) were assessed after immersion in fetal bovine serum (FBS), saline, and deionized water (DW). Surface morphology was examined using scanning electron microscopy (SEM). Results: The compressive strength of EMPR samples immersed in FBS for both 1 and 7 days was significantly lower compared to those in saline and DW, with no significant differences between the saline and DW groups. The PMTA group exhibited the lowest compressive strength after 1 day in FBS, although it did not significantly differ from that of saline and DW groups. SEM images revealed significant differences in crystalline formation between FBS and the other experimental groups. Conclusion: Minimizing blood contamination during vital pulp therapy (VPT) is crucial to ensure optimal CSC setting. PMTA may be preferred over EMPR for resisting high occlusal forces in the presence of blood contamination.

키워드

참고문헌

  1. Cohenca N, Paranjpe A, Berg J. Vital pulp therapy. Dent Clin North Am. 2013;57:59-73. https://doi.org/10.1016/j.cden.2012.09.004
  2. Bjorndal L, Simon S, Tomson PL, Duncan HF. Management of deep caries and the exposed pulp. Int Endod J. 2019;52:949-73. https://doi.org/10.1111/iej.13128
  3. Taha NA, Khazali MA. Partial pulpotomy in mature permanent teeth with clinical signs indicative of irreversible pulpitis: a randomized clinical trial. J Endod. 2017;43:1417-21. https://doi.org/10.1016/j.joen.2017.03.033
  4. Smail-Faugeron V, Glenny AM, Courson F, Durieux P, Muller-Bolla M, Fron Chabouis H. Pulp treatment for extensive decay in primary teeth. Cochrane Database Syst Rev. 2018;5:CD003220.
  5. Hanna SN, Alfayate RP, Prichard J. Vital pulp therapy an insight over the available literature and future expectations. Eur Endod J. 2020;5:46-53.
  6. Jefferies SR. Bioactive and biomimetic restorative materials: a comprehensive review. Part I. J Esthet Restor Dent. 2014;26:14-26. https://doi.org/10.1111/jerd.12069
  7. Hilton TJ, Ferracane JL, Mancl L; Northwest Practice-based Research Collaborative in Evidence-based Dentistry (NWP). Comparison of CaOH with MTA for direct pulp capping: a PBRN randomized clinical trial. J Dent Res. 2013;92(7 Suppl):S16-S22. https://doi.org/10.1177/0022034513484336
  8. Koike T, Polan MA, Izumikawa M, Saito T. Induction of reparative dentin formation on exposed dental pulp by dentin phosphophoryn/collagen composite. Biomed Res Int. 2014;2014:745139.
  9. Komabayashi T, Zhu Q, Eberhart R, Imai Y. Current status of direct pulp-capping materials for permanent teeth. Dent Mater J. 2016;35:1-12. https://doi.org/10.4012/dmj.2015-013
  10. Torabinejad M, Hong CU, McDonald F, Pitt Ford TR. Physical and chemical properties of a new root-end filling material. J Endod. 1995;21:349-53. https://doi.org/10.1016/S0099-2399(06)80967-2
  11. Lee SJ, Monsef M, Torabinejad M. Sealing ability of a mineral trioxide aggregate for repair of lateral root perforations. J Endod. 1993;19:541-4. https://doi.org/10.1016/S0099-2399(06)81282-3
  12. Abd Al Gawad RY, Hanafy RMH. Success rate of three capping materials used in pulpotomy of primary molars: a randomized clinical trial. Saudi Dent J. 2021;33:560-7. https://doi.org/10.1016/j.sdentj.2020.08.007
  13. Mohammadi Z, Dummer PMH. Properties and applications of calcium hydroxide in endodontics and dental traumatology. Int Endod J. 2011;44:697-730. https://doi.org/10.1111/j.1365-2591.2011.01886.x
  14. Prati C, Gandolfi MG. Calcium silicate bioactive cements: Biological perspectives and clinical applications. Dent Mater. 2015;31:351-70. https://doi.org/10.1016/j.dental.2015.01.004
  15. Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review - part I: chemical, physical, and antibacterial properties. J Endod. 2010;36:16-27. https://doi.org/10.1016/j.joen.2009.09.006
  16. Motwani N, Ikhar A, Nikhade P, Chandak M, Rathi S, Dugar M, Rajnekar R. Premixed bioceramics: A novel pulp capping agent. J Conserv Dent. 2021;24:124-9. https://doi.org/10.4103/JCD.JCD_202_20
  17. Kwon YD, Seok S, Lee SH, Lim BS. Comparison of intraosseous implantation between paste type mineral trioxide aggregates (MTA) and powder-liquid mix type MTA. Korean J Dent Mater. 2017;44:229-46. https://doi.org/10.14815/kjdm.2017.44.3.229
  18. Choi Y, Park SJ, Lee SH, Hwang YC, Yu MK, Min KS. Biological effects and washout resistance of a newly developed fast-setting pozzolan cement. J Endod. 2013;39:467-72. https://doi.org/10.1016/j.joen.2012.11.023
  19. Torabinejad M, Watson TF, Ford TP. Sealing ability of a mineral trioxide aggregate when used as a root end filling material. J Endod. 1993;19:591-5. https://doi.org/10.1016/S0099-2399(06)80271-2
  20. Nekoofar MH, Oloomi K, Sheykhrezae MS, Tabor R, Stone DF, Dummer PM. An evaluation of the effect of blood and human serum on the surface microhardness and surface microstructure of mineral trioxide aggregate. Int Endod J. 2010;43:849-58. https://doi.org/10.1111/j.1365-2591.2010.01750.x
  21. Nekoofar MH, Stone DF, Dummer PM. The effect of blood contamination on the compressive strength and surface microstructure of mineral trioxide aggregate. Int Endod J. 2010;43:782-91.
  22. VanderWeele RA, Schwartz SA, Beeson TJ. Effect of blood contamination on retention characteristics of MTA when mixed with different liquids. J Endod. 2006;32:421-4. https://doi.org/10.1016/j.joen.2005.09.007
  23. Kim Y, Kim S, Shin YS, Jung IY, Lee SJ. Failure of setting of mineral trioxide aggregate in the presence of fetal bovine serum and its prevention. J Endod. 2012;38:536-40. https://doi.org/10.1016/j.joen.2011.12.005
  24. Tingey MC, Bush P, Levine MS. Analysis of mineral trioxide aggregate surface when set in the presence of fetal bovine serum. J Endod. 2008;34:45-9. https://doi.org/10.1016/j.joen.2007.09.013
  25. Organization IS. ISO 9917-1: 2007. Dentistry - Water-based cements. Part 1: Powder/liquid acid-base cements. ISO Geneva, 2007.
  26. Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review - Part III: Clinical applications, drawbacks, and mechanism of action. J Endod. 2010;36:400-13. https://doi.org/10.1016/j.joen.2009.09.009
  27. Danesh G, Dammaschke T, Gerth HU, Zandbiglari T, Schafer E. A comparative study of selected properties of ProRoot mineral trioxide aggregate and two Portland cements. Int Endod J. 2006;39:213-9. https://doi.org/10.1111/j.1365-2591.2006.01076.x
  28. Kayahan MB, Nekoofar MH, Kazandag M, Canpolat C, Malkondu O, Kaptan F, Dummer PM. Effect of acid-etching procedure on selected physical properties of mineral trioxide aggregate. Int Endod J. 2009;42:1004-14. https://doi.org/10.1111/j.1365-2591.2009.01610.x
  29. Nekoofar MH, Adusei G, Sheykhrezae MS, Hayes SJ, Bryant ST, Dummer PM. The effect of condensation pressure on selected physical properties of mineral trioxide aggregate. Int Endod J. 2007;40:453-61. https://doi.org/10.1111/j.1365-2591.2007.01236.x
  30. Jeong YN, Yang SY, Park BJ, Park YJ, Hwang YC, Hwang IN, Oh WM. Physical and chemical properties of experimental mixture of mineral trioxide aggregate and glass ionomer cement. J Korean Acad Conserv Dent. 2010;35:344-52. https://doi.org/10.5395/JKACD.2010.35.5.344
  31. Lee BN, Hwang YC, Jang JH, Chang HS, Hwang IN, Yang SY, Park YJ, Son HH, Oh WM. Improvement of the properties of mineral trioxide aggregate by mixing with hydration accelerators. J Endod. 2011;37:1433-6. https://doi.org/10.1016/j.joen.2011.06.013
  32. Kogan P, He J, Glickman GN, Watanabe I. The effects of various additives on setting properties of MTA. J Endod. 2006;32:569-72. https://doi.org/10.1016/j.joen.2005.08.006
  33. Kang TY, Choi JW, Kim KM, Kwon JS. Mechanical and physico-chemical properties of premixed-MTA in contact with three different types of solutions. Korean J Dent Mater. 2021;48:281-92. https://doi.org/10.14815/kjdm.2021.48.4.281
  34. Nekoofar MH, Davies TE, Stone D, Basturk FB, Dummer PM. Microstructure and chemical analysis of blood-contaminated mineral trioxide aggregate. Int Endod J. 2011;44:1011-8. https://doi.org/10.1111/j.1365-2591.2011.01909.x
  35. Lee YL, Lee BS, Lin FH, Lin AY, Lan WH, Lin CP. Effects of physiological environments on the hydration behavior of mineral trioxide aggregate. Biomaterials. 2004;25:787-93. https://doi.org/10.1016/S0142-9612(03)00591-X
  36. Lee YL, Lin FH, Wang WH, Ritchie HH, Lan WH, Lin CP. Effects of EDTA on the hydration mechanism of mineral trioxide aggregate. J Dent Res. 2007;86:534-8. https://doi.org/10.1177/154405910708600609
  37. Remadnia A, Dheilly R, Laidoudi B, Queneudec M. Use of animal proteins as foaming agent in cementitious concrete composites manufactured with recycled PET aggregates. Construct Build Mater. 2009;23:3118-23. https://doi.org/10.1016/j.conbuildmat.2009.06.027
  38. Jasiczak J, Zielinski K. Effect of protein additive on properties of mortar. Cement Concrete Composites. 2006;28:451-7. https://doi.org/10.1016/j.cemconcomp.2005.12.007
  39. Hesaraki S, Moztarzadeh F, Solati-Hashjin M. Phase evaluation of an effervescent-added apatitic calcium phosphate bone cement. J Biomed Mater Res B Appl Biomater. 2006;79:203-9.