
Introduction 

Psychiatric disorders cause significant distress and functional im-
pairment, resulting in substantial social and economic losses total-
ing 5 trillion US dollars [1]. The individual suffering and socioeco-
nomic burden are, to a considerable extent, attributed to the lack of 
appropriate biomarkers for accurate diagnosis and treatment. The 
absence of suitable biomarkers leads to delayed initiation of treat-
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ment or interruption during treatment [2]. A biomarker is “a de-
fined characteristic that is measured as an indicator of normal bio-
logical processes, pathogenic processes, or responses to an expo-
sure or intervention” [3]. Biomarkers play crucial roles in the diag-
nosis, prediction, treatment, and monitoring of diseases. Conse-
quently, a wide range of biomarkers has been utilized in various 
fields, and active research is dedicated to the development of novel 
biomarkers [4]. The lack of useful psychiatric biomarkers is closely 
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linked to the complex structures and functions of the brain. Addi-
tionally, a significant contributing factor is the lack of appropriate 
modalities for direct monitoring of brain function [5]. Therefore, 
various neuroimaging and neurophysiological modalities are used 
to indirectly assess brain function to identify biomarkers for psy-
chiatric disorders [6]. 

Electroencephalography (EEG) is a widely used neurophysio-
logical modality for studying psychiatric biomarkers [7]. EEG 
measures the electrophysiological functions of the brain and pri-
marily reflects the synaptic activity of pyramidal cells [8]. By at-
taching electrodes to the scalp, EEG noninvasively monitors brain 
function, making it a valuable tool that has historically been used 
for diagnosing various neurological disorders, such as epilepsy and 
narcolepsy, and for treatments such as neurofeedback [9]. Addi-
tionally, EEG is a useful modality in research areas such as brain- 
computer interfaces and cognitive neuroscience [10]. Conse-
quently, it is actively used in research aimed at identifying biomark-
ers that are lacking for various psychiatric disorders, such as depres-
sion, bipolar disorder (BD), and schizophrenia [11]. EEG-based 
biomarkers are valuable not only for the diagnosis and treatment of 
psychiatric disorders but also for understanding their pathophysi-
ology. For example, in attention deficit hyperactivity disorder 
(ADHD), research using EEG biomarkers has improved our un-
derstanding of disorder’s heterogeneity [12]. In autism spectrum 
disorder, studies utilizing EEG biomarkers have provided insights 
into the core pathologies of mirror neuron dysfunction and senso-
ry processing problems [13]. 

Despite the various potentials of EEG and the considerable 
amount of research conducted to date, EEG-based biomarkers 
have not yet been used practically in the clinical psychiatric field. 
This limitation can be attributed to the complexities of psychiatric 
disorders and several constraints in current EEG measurements 
and analyses [14]. However, numerous efforts across various do-
mains have recently been made to overcome the limitations of 
EEG [15,16]. Therefore, this study aimed to review the existing re-
search on identifying biomarkers for psychiatric disorders using 
EEG, examine the limitations of these studies, and explore poten-
tial solutions to overcome these challenges. 

Investigating potential 
electroencephalography biomarkers for 
major psychiatric disorders: insights 
into depression, bipolar disorder, and 
schizophrenia 

1. Depression 
Depression is a mental disorder that involves emotional symp-

toms, such as depressed mood, and encompasses a variety of phys-
ical and cognitive changes, including alterations in appetite, sleep 
patterns, and concentration [17]. Factors that contribute to the on-
set of depression include genetic susceptibility, stress, and develop-
mental trauma. However, the lack of objective biomarkers often 
makes it difficult to receive timely and appropriate treatment [18]. 
Additionally, even with pharmacological treatment, 30% to 40% of 
patients experience residual symptoms, making it crucial to predict 
treatment response; however, there are currently no adequate bio-
markers [19]. Therefore, ongoing efforts have been made to use 
biomarkers for the diagnosis and treatment of depression, and vari-
ous studies have been conducted using EEG. 

In the context of using EEG as a biomarker for depression, char-
acteristics based on Fourier transform spectral analysis have been 
the most extensively studied. Alpha asymmetry is a representative 
marker of depression based on spectral analysis, reflecting hypoac-
tivity of alpha power in the left frontal area and hyperactivity in the 
right frontal area [20]. However, recent studies have suggested that 
these characteristics are not consistently observed and remain con-
troversial [21]. More recently, increased gamma-band power, lo-
cated in higher frequency ranges, has been identified as a novel bio-
marker of depression, indicating changes in the balance between 
brain excitation and inhibition [22]. EEG during sleep shows spe-
cific changes in individuals with depression. Specifically, patients 
with depression exhibit increased rapid eye movement (REM) 
sleep and decreased REM sleep latency. Additionally, changes in 
slow-wave activity related to treatment response have been identi-
fied [23]. REM sleep is characterized by changes in the theta-, 
beta-, and gamma-band activities [24]. Considering these charac-
teristics, various methods based on Fourier transformation have 
been utilized for the automatic classification of sleep stages, includ-
ing REM and slow-wave sleep [25]. Although Fourier transforma-
tion primarily reflects the linear characteristics of EEG signals, 
complexity measures that capture the nonlinear characteristics of 
EEG signals have been used in various analyses of depression [26]. 
Studies using various complexity measures, such as entropy and 
Lempel–Ziv complexity, have generally indicated higher complexi-
ty in the EEG of individuals with depression [27,28]. Lempel–Ziv 
complexity is a metric that reflects the complexity of time-series 
data, whereas entropy, based on information theory, reflects the 
uncertainty of time-series data. In EEG, these metrics reflect fluc-
tuations in neural activity or spontaneous stochasticity [29-31]. 
Studies using event-related potentials (ERPs) have been conduct-
ed. The P300 component, which reflects cognitive processing in 
the brain, tends to show an increased latency and decreased ampli-
tude during depression [32]. Furthermore, the P50 component, 
which reflects sensory processing, shows increased amplitude in 
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depression, indicating impaired sensory gating in patients [7]. 

2. Bipolar disorder 
BD is a chronic mental illness characterized by extreme mood 
swings between depression and mania, affecting approximately 
2.4% of the global population and primarily manifesting in early 
adulthood [33]. The development of reliable biomarkers is essen-
tial for the accurate diagnosis and prediction of treatment out-
comes in BD and for elucidating its uncertain pathophysiology 
[34]. EEG provides detailed insights into brain activity through 
the analysis of various brainwave frequencies such as alpha, delta, 
theta, and gamma [35]. In patients with BD, EEG studies have 
identified several notable abnormalities. For example, abnormali-
ties in alpha activity, particularly in frontocentral regions, have been 
associated with cognitive and sensory processing deficits [36,37]. 
While beta, left delta, and theta activities are normalized with lithi-
um, treatment response is most closely associated with basal delta 
activity. Lithium plasma concentration correlates with theta activi-
ty [38], and delta activity is linked to attention deficit and cognitive 
impairment [39]. Moreover, the increased beta activity and frontal 
alpha asymmetry during manic episodes suggest neural excitation 
and mood dysregulation [40]. Similar to research on depression, 
studies have been conducted to identify biomarkers of BD using 
measures of complexity. Fernández et al. [41] used Lempel–Ziv 
complexity to distinguish the differences in EEG complexity be-
tween depression and BD. Additionally, Bahrami et al. [42] report-
ed that EEG complexity increased during the manic state in BD. 

3. Schizophrenia 
Schizophrenia is a persistent and often debilitating mental illness 
that affects approximately 1% of the global population [43]. Devel-
oping biomarkers for schizophrenia is essential to provide objec-
tive diagnostic and treatment measures, validate targets, predict re-
sponses, and enable personalized treatment by identifying disease 
mechanisms [44]. In schizophrenia research, power spectral analy-
sis of EEG has revealed several key abnormalities. Patients typically 
exhibit increased power in the delta (0.5–4 Hz) and theta (4–8 
Hz) frequency bands, indicating a disruption in slow-wave activity 
[45]. Additionally, reduced alpha power (8–13 Hz) is commonly 
observed, reflecting impaired cortical inhibitory mechanisms and 
resting-state neural activity. Although alterations in beta power 
(13–30 Hz) have been reported, the findings vary, with a few stud-
ies showing increased beta activity and others showing decreased 
beta activity. 

Consequently, various EEG-based markers have been extensive-
ly studied in schizophrenia, with a particular focus on ERPs that 
measure electrophysiological changes [45] following stimulation. 

The most studied markers are P50 sensory gating, N100, mis-
match negativity (MMN), and P300, each of which provides 
unique insights into different aspects of brain function. P50 senso-
ry gating reflects the ability of the brain to suppress irrelevant stim-
uli, with deficits indicating impaired inhibitory processes that are 
commonly observed in schizophrenia [46]. The amplitude of the 
N100 waveform, which is associated with early auditory process-
ing, is typically reduced in patients with schizophrenia, suggesting 
deficiencies in sensory registration [47]. MMN, elicited by devia-
tions in the sequence of auditory stimuli, is a robust marker of pre-
dictive coding deficits and is sensitive to N-methyl-D-aspartate re-
ceptor dysfunction, highlighting its potential as an early indicator 
of psychosis risk [48]. Finally, the P300 component, which is in-
dicative of attention and memory processes, shows consistent am-
plitude reduction and latency prolongation in schizophrenia, cor-
relating with cognitive impairment [49]. These EEG markers en-
hance our understanding of the underlying neurobiology of psy-
chosis and offer valuable tools for early diagnosis, monitoring dis-
ease progression, and tailoring individualized treatment strategies. 

Electroencephalography biomarkers 
in psychiatry: benefits, limitations, and 
developmental hurdles 

1. Advantages of electroencephalography-based 
biomarkers in neuropsychiatric applications 
EEG-based biomarkers offer several advantages for neuropsychiat-
ric applications [50]. They enable real-time data acquisition and 
provide immediate feedback and continuous monitoring, which 
are crucial for rapid diagnosis and treatment response assessment 
[51]. In addition, unlike other neuroimaging techniques that indi-
rectly measure neuronal activity through blood oxygen levels, EEG 
directly measures the electrical activity between neurons, which is 
the primary cause of psychiatric disorders [52]. EEG is noninva-
sive and causes minimal discomfort to patients, making it ideal for 
repeated measurements [53]. The noninvasive nature of EEG 
makes it significantly safer than other invasive methods used to di-
agnose neuropsychiatric disorders, such as blood sampling, cere-
brospinal fluid tapping, and brain tissue biopsy. Moreover, EEG is 
cost-effective compared to other neuroimaging techniques, facili-
tating broader patient access and large-scale studies [54]. With 
high temporal resolution, EEG captures changes in fine-grained 
brain activity that are essential for understanding the mechanisms 
of neuropsychiatric diseases [55]. EEG is applicable for diagnosing 
and monitoring various conditions, including epilepsy, sleep disor-
ders, ADHD, and schizophrenia, and can predict treatment re-
sponses and disease progression [11,40]. Integrating EEG data 

263https://doi.org/10.12701/jyms.2024.00668

J Yeungnam Med Sci 2024;41(4):261-268

https://doi.org/10.12701/jyms.2024.00668


with machine learning algorithms allows the development of pre-
cise diagnostic models, aiding in the creation of personalized treat-
ment plans [2,56]. Furthermore, with appropriate data processing 
and analysis techniques, EEG-based biomarkers can achieve high 
sensitivity and specificity, making them useful for early diagnosis 
and evaluation of treatment efficacy [11]. These advantages high-
light the significant role of EEG-based biomarkers in the diagnosis 
and management of neuropsychiatric disorders. 

2. Challenges in the clinical application of 
electroencephalography-based biomarkers for psychiatric 
disorders 
Despite their numerous advantages, EEG-based biomarkers for 
psychiatric disorders have several limitations that restrict their 
broader clinical application. First, the spatial resolution of EEG is 
relatively low compared with that of other neuroimaging tech-
niques such as functional magnetic resonance imaging (fMRI), 
making it difficult to accurately localize neural activity, particularly 
in deeper or smaller brain regions [57]. This limitation can impede 
the precise mapping of brain functions and identification of specif-
ic neural substrates underlying neuropsychiatric conditions. Sec-
ond, EEG signals are highly susceptible to interference [58]. EEG 
signals can be distorted by the electrical resistance of the skull and 
scalp and are often contaminated by external electromagnetic in-
terference and physiological noise, such as eye blinks, muscle 
movements, and cardiac activity. This interference can significantly 
affect the quality and reliability of the recorded data, making it 
challenging to isolate relevant neural signals from noise. Therefore, 
distinct changes in EEG, such as those observed with seizures, can 
be detected with minimal processing and near real-time monitor-
ing. However, the cognitive and emotional characteristics of the 
brain, which are primarily associated with psychiatric disorders, are 
highly susceptible to such noise [59]. Third, the complexity and 
inherent noise of EEG data make their interpretation particularly 
challenging [60]. 

Analyzing EEG data requires sophisticated signal-processing 
techniques and expert knowledge of neurophysiology and bioin-
formatics, which can be significant barriers in both clinical and re-
search settings. However, the need for advanced analytical meth-
ods limits the accessibility and practicality of EEG-based biomark-
ers, particularly in settings with limited technical resources and ex-
pertise. Additionally, individual physiological differences, such as 
variations in skull thickness, scalp conditions, and brain anatomy, 
can markedly influence EEG signals [61]. These interindividual 
differences can lead to variability in the recorded data, thus reduc-
ing the consistency and reliability of EEG-based biomarkers. Such 
variability poses a significant challenge in standardizing EEG mea-

surements and ensuring that biomarkers are comparable across in-
dividuals and studies. Another critical limitation is the difficulty in 
standardizing EEG measurements and data processing methods 
[62]. Considerable variability exists in the equipment used, proto-
cols for data acquisition, and algorithms for data analysis, which 
can lead to discrepancies in the results across different studies [63]. 
For example, high-density EEG systems, which provide more de-
tailed spatial information, may yield different results than low-den-
sity systems, complicating the comparison and replication of find-
ings. Finally, the clinical applicability of EEG-based biomarkers is 
currently limited to only a few neuropsychiatric conditions. Al-
though significant progress has been made regarding the use of 
EEG biomarkers for disorders such as epilepsy, schizophrenia, and 
sleep disorders, the validity and reliability of these biomarkers need 
to be established for a broader range of conditions through exten-
sive research and clinical validation [5]. This limitation under-
scores the need for further studies to explore the potential of EEG 
biomarkers in the diagnosis and management of other neuropsy-
chiatric and neurological disorders. These challenges highlight the 
need for continued technological advancements, efforts to stan-
dardize EEG methodologies, and comprehensive research to en-
hance the reliability, validity, and clinical applicability of EEG-
based biomarkers. Addressing these limitations is crucial for inte-
grating EEG biomarkers into personalized medicine and for im-
proving patient outcomes in neuropsychiatric care. 

3. Challenges in biomarker development due to the 
complexity of psychiatric disorders 
Developing EEG-based biomarkers for psychiatric disorders pres-
ents significant challenges owing to both the limitations of EEG as 
a modality and the inherent complexity and heterogeneity of these 
conditions. Unlike other medical fields, where biomarkers (such as 
genetic markers in Huntington’s disease or breast cancer gene 1/2 
mutations) provide clear diagnostic value, psychiatric disorders 
lack such straightforward biological markers [5]. The symptoms of 
psychiatric disorders are often nonspecific and overlap significantly 
across diagnoses, making it difficult to identify unique biomarkers 
[64]. For instance, symptoms of psychosis can manifest in schizo-
phrenia, BD, major depressive disorder with psychotic features, or 
even because of substance abuse. 

The diagnostic criteria in psychiatry, such as those outlined in 
the Diagnostic and Statistical Manual of Mental Disorders, fifth 
edition, are primarily based on symptomatology rather than un-
derlying biological mechanisms, further complicating the identifi-
cation of reliable biomarkers [65]. This symptom-based approach 
leads to diagnostic instability, whereby a patient’s diagnosis may 
change over time as the symptoms evolve, potentially leading to 
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misclassification in biomarker studies. Moreover, the lack of objec-
tive laboratory tests in psychiatry means that clinical diagnoses rely 
heavily on subjective clinical interviews, increasing variability and 
reducing the reliability of diagnoses among clinicians. This issue is 
compounded by the high comorbidities of psychiatric conditions, 
in which patients often present with multiple overlapping disor-
ders, complicating the isolation of biomarkers specific to a single 
diagnosis [2]. Methodological challenges, such as small sample siz-
es, lack of standardization of study protocols, and need for longitu-
dinal studies to understand the temporal relationships between 
biomarkers and psychiatric conditions, further hinder progress 
[5]. Many studies have excluded individuals with severe symp-
toms or high comorbidities, limiting the generalizability of their 
findings to broader clinical populations. 

Animal models, which are instrumental in biomarker research 
for other medical conditions, are less effective in psychiatry be-
cause of the fundamental differences in brain structure and func-
tion between humans and animals [66]. Psychiatric disorders of-
ten involve complex cognitive and emotional processes that are dif-
ficult to replicate in animal models, thereby reducing their utility 
for biomarker discovery. These challenges highlight the need for 
large-scale collaborative research efforts that integrate multiple 
data types and adopt a more systematic and standardized approach 
to biomarker research. By addressing these methodological and 
clinical challenges, the field of psychiatry can move closer to identi-
fying reliable biomarkers to improve the diagnosis, treatment, and 
understanding of psychiatric disorders. 

Overcoming challenges in 
electroencephalography-based biomarker 
development for psychiatric disorders

Ongoing research efforts are aimed at overcoming the limitations 
of traditional EEG characteristics and analytical methods [67]. To 
address the spatial resolution limitations of EEG, researchers are 
exploring simultaneous acquisition with other neuroimaging mo-
dalities, such as fMRI and magnetoencephalography, as well as en-
hancing three-dimensional reconstruction techniques for more 
precise localization of brain activity [68,69]. High-dimensional 
EEG data present significant analytical challenges. However, lever-
aging large-scale open data and advanced multivariate analysis 
methods can help eliminate irrelevant features and highlight signif-
icant patterns [70,71]. For instance, large-scale multisite EEG big 
data studies, such as the ENIGMA (Evaluation of Nitrous Oxide 
in the Gas Mixture for Anesthesia) study, are expected to address 
and potentially overcome some of the current limitations of EEG 
[72]. 

Techniques such as independent component and principal com-
ponent analyses are used to reduce the dimensionality of EEG 
data, address complexity, and improve EEG usability in clinical ap-
plications [73]. Standardized protocols, such as those developed in 
projects such as Brain Imaging Data Structure, are critical for inte-
grating disparate EEG datasets, thereby enhancing the reliability of 
EEG-based biomarkers [74]. Additionally, artificial intelligence 
(AI) and deep learning technologies are revolutionizing EEG anal-
ysis by overcoming traditional limitations, aiding in the discovery 
of new biomarkers, and integrating different features into novel 
biomarker concepts [75,76]. AI-based approaches can address pre-
processing challenges and enhance the predictive power of EEG 
signals; however, they require large sample sizes and face issues re-
lated to the interpretability of complex models [77-79]. 

EEG is a promising modality for AI-driven psychiatric biomark-
er research owing to its relatively low cost and noninvasive nature 
[80]. By combining EEG with other neuroimaging techniques and 
employing advanced data analysis methods, researchers aim to de-
velop reliable and precise biomarkers that can significantly im-
prove personalized treatment strategies in psychiatry [81]. 

Conclusion 

EEG-based biomarkers offer substantial potential for advancing 
the diagnosis and treatment of psychiatric disorders owing to their 
noninvasive nature, high temporal resolution, and cost-effective-
ness. This review highlights various promising EEG biomarkers for 
depression, BD, and schizophrenia. However, the clinical applica-
tion of these biomarkers faces challenges, including limited spatial 
resolution, susceptibility to noise, and the complexity of psychiat-
ric conditions. To overcome these limitations, integrating EEG 
with other neuroimaging techniques, enhancing signal-processing 
methods, and standardizing measurement protocols are essential. 
The incorporation of AI and machine learning can further en-
hance the predictive power and discovery of novel biomarkers; 
however, this requires large well-characterized datasets. Large-scale 
collaborative research efforts and the development of standardized 
protocols are crucial for advancing this field. Ultimately, reliable 
EEG-based biomarkers have the potential to transform psychiatric 
care by enabling early diagnosis, personalized treatment, and im-
proved monitoring of disease progression. 
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