DOI QR코드

DOI QR Code

Influences of supplemental methods of commercial probiotics on the growth and digestive enzyme activities of spotted scat Scatophagus argus fingerlings

  • Thanh Duc Nguyen (University of Agriculture and Forestry, Hue University) ;
  • Hang Thi Thuy Tran (University of Agriculture and Forestry, Hue University) ;
  • Dieu Vo (University of Agriculture and Forestry, Hue University) ;
  • Quoc Van Phan (University of Agriculture and Forestry, Hue University) ;
  • Manh Van Ngo (Institute of Aquaculture, Nha Trang University) ;
  • Huy Van Nguyen (University of Agriculture and Forestry, Hue University)
  • Received : 2024.02.19
  • Accepted : 2024.05.31
  • Published : 2024.09.30

Abstract

Spotted scat Scatophagus argus has a high nutritional value and is among the most widely consumed fish species in Asia. This study was conducted to learn more about the solution for stimulating digestive enzyme synthesis with commercial probiotics. Three different methods of probiotic supplementations of Probai A (Bayer) (feeding - OR, feeding and environment - OE, environment - EN) and control treatment (no probiotic applied) - CT were performed in triplicates by using a completely randomization design method. The results showed no differences in growth performance and survival rates of spotted scat at the fingerling stage among the treatments (p > 0.05). The hepatosomatic index (HSI) and conditional factor did not depend on the probiotic supplementation methods (p > 0.05), but these values had a significant difference between experimental treatments compared to control treatments (p < 0.05). After 15-45 days, only amylase activity in the stomach was significantly higher than those of the control group (p < 0.05). Amylase activity in the intestine and trypsin activity in both the stomach and intestine of experimental treatments were significantly higher than those of the control treatment during 15-30 days (p < 0.05), and then no significant differences were found from day 30 to day 45 (p > 0.05). Our findings indicate that probiotic administration through feeding was the best way to increase the growth weight of spotted scat at the fingerling stage. Further research on the mechanism of stimulating digestive enzyme synthesis when probiotics are used in commercial fish seed production is required.

Keywords

Acknowledgement

This work is a contribution to the 65th Anniversary of Nha Trang University, Vietnam.

References

  1. Beveridge MCM, Sikdar PK, Frerichs GN, Millar S. The ingestion of bacteria in suspension by the common carp Cyprinus carpio L. J Fish Biol. 1991;39:825-31. 
  2. Cahu CL, Zambonino Infante JL, Peres A, Quazuguel P, Le Gall MM. Algal addition in sea bass (Dicentrarchus labrax) larvae rearing: effect on digestive enzymes. Aquaculture. 1998;161:479-89. 
  3. Cordero H, Guardiola FA, Tapia-Paniagua ST, Cuesta A, Meseguer J, Carmen Balebona MC, et al. Modulation of immunity and gut microbiota after dietary administration of alginate encapsulated Shewanella putrefaciens Pdp11 to gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol. 2015;45:608-18. 
  4. Corre VL, Janeo R, Caipang C, Calpe A. Use of probiotics and reservoir with "green water" and other tips of a successful shrimp culture. Aquac Asia. 2000;5:34-8. 
  5. Do TTH, Nguyen TE, Nguyen MN, Kaneko T, Nguyen TKH, Nguyen TP. Effect of temperature on physiological indicators, growth and digestive enzyme activity of pangasius (Pangasianodon hypophthalmus) fry stage (Abstract in English). Can Tho Univ J Sci. 2020;56:1-11. 
  6. Dung NM, Chau NTL, Tam BM, Nga PTT, Hien TTT. Digestive enzyme activities of snakehead (Channa striata) larvae from early hatching to 35 days with different diets. Can Tho Univ J Sci. 2017;49:84-90. 
  7. Fraser Clark K, Acorn AR, Greenwood SJ. Differential expression of American lobster (Homarus americanus) immune related genes during infection of Aerococcus viridans var. homari, the causative agent of Gaffkemia. J Invertebr Pathol. 2013;112:192-202. 
  8. Fuller R. Probiotics in man and animals. J Appl Bacteriol. 1989;66:365-78. 
  9. Gilannejad N, Martinez-Rodriguez G, Yufera M, Moyano FJ. Modelling digestive hydrolysis of nutrients in fish using factorial designs and desirability function. PLOS ONE. 2018;13:e0206556. 
  10. Harada H, Ishikawa H. Probiotic effect of Lactobacillus sp. DS12 in flounder (Paralichthys olivaceus). J Gen Appl Microbiol. 1997;43:363-7. 
  11. Haryanti, Gunawan, Setiadi A, Sembiring SBM, Permana IGN, Hutapea JH, Sugama K. The effect of probiotics on digestive enzyme activity during larvae and juvenile stage of yellow fin tuna (Thunnus albacares). IOP Conf Ser Earth Environ Sci. 2021;890:012019. 
  12. Jackson C, Preston N, Thompson PJ, Burford M. Nitrogen budget and effluent nitrogen components at an intensive shrimp farm. Aquaculture. 2003;218:397-411. 
  13. Jahangiri L, Esteban MA. Administration of probiotics in the water in finfish aquaculture systems: a review. Fishes. 2018;3:33. 
  14. Lauzon HL, Gudmundsdottir S, Steinarsson A, Oddgeirsson M, Petursdottir SK, Reynisson E, et al. Effects of bacterial treatment at early stages of Atlantic cod (Gadus morhua L.) on larval survival and development. J Appl Microbiol. 2010;108:624-32. 
  15. Magouz FI, Dawood MAO, Salem MFI, El-Ghandour M, Van Doan H, Mohamed AAI. The role of a digestive enhancer in improving the growth performance, digestive enzymes activity, and health condition of Nile tilapia (Oreochromis niloticus) reared under suboptimal temperature. Aquaculture. 2020;526:735388. 
  16. Mandiki SNM, Milla S, Wang N, Blanchard G, Djonkack T, Tanascaux S, et al. Effects of probiotic bacteria on growth parameters and immune defence in Eurasian perch Perca fluviatilis L. larvae under intensive culture conditions. Aquac Res. 2011;42:693-703. 
  17. Matena J, Simek K, Fernando CH. Ingestion of suspended bacteria by fish: a modified approach. J Fish Biol. 1995;47:334-6. 
  18. Monier MN, Kabary H, Elfeky A, Saadony S, El-Hamed NNBA, Eissa MEH, et al. The effects of Bacillus species probiotics (Bacillus subtilis and B. licheniformis) on the water quality, immune responses, and resistance of whiteleg shrimp (Litopenaeus vannamei) against Fusarium solani infection. Aquac Int. 2023;31:3437-55. 
  19. Moyano FJ, Rodriganez MAS, Diaz M, Tacon AGJ. Application of in vitro digestibility methods in aquaculture: constraints and perspectives. Rev Aquac. 2014;7:223-42. 
  20. Nogami K, Hamasaki K, Maeda M, Hirayama K. Biocontrol method in aquaculture for rearing the swimming crab larvae Portunus trituberculatus. Hydrobiologia. 1997;358:291-5. 
  21. Nolasco-Soria H. Amylase quantification in aquaculture fish studies: a revision of most used procedures and presentation of a new practical protocol for its assessment. Aquaculture. 2021;538:736536. 
  22. Olafsen JA. Interactions between fish larvae and bacteria in marine aquaculture. Aquaculture. 2001;200:223-47. 
  23. Ottesen OH, Olafsen JA. Effects on survival and mucous cell proliferation of Atlantic halibut, Hippoglossus hippoglossus L., larvae following microflora manipulation. Aquaculture. 2000;187:225-38. 
  24. Rengpipat S, Phianphak W, Piyatiratitivorakul S, Menasveta P. Effects of a probiotic bacterium on black tiger shrimp Penaeus monodon. Aquaculture. 1998;167:301-13. 
  25. Ronnestad I, Yufera M, Ueberschar B, Ribeiro L, Saele O, Boglione C. Feeding behaviour and digestive physiology in larval fish: current knowledge, and gaps and bottlenecks in research. Rev Aquac. 2013;5:S59-98. 
  26. Sarkar MRU, Khan S, Haque MM, Haq MS. Evaluation of growth and water quality in pangasiid catfish (Pangasius hypophthalmus) monoculture and polyculture with silver carp (Hypophthalmichthys molitrix). J Bangladesh Agric Univ. 2006;4:339-46. 
  27. Suzer C, Coban D, Okan Kamaci H, Saka S, Firat K, Otgucuoglu O, et al. Lactobacillus spp. bacteria as probiotics in gilthead sea bream (Sparus aurata, L.) larvae: effects on growth performance and digestive enzyme activities. Aquaculture. 2008;280:140-5. 
  28. Taoka Y, Maeda H, Jo JY, Sakata T. Influence of commercial probiotics on the digestive enzyme activities of tilapia, Oreochromis niloticus. Aquac Sci. 2007;55:183-9. 
  29. Tovar D, Zambonino J, Cahu C, Gatesoupe FJ, Vazquez-Juarez R, Lesel R. Effect of live yeast incorporation in compound diet on digestive enzyme activity in sea bass (Dicentrarchus labrax) larvae. Aquaculture. 2002;204:113-23. 
  30. Verma AK, Prakash S. Impact of arsenic on haematology, condition factor, hepatosomatic and gastrosomatic index of a fresh water cat fish, Mystus vittatus. Int J Biol Sci. 2019;10:49-54. 
  31. Vine NG, Leukes WD, Kaiser H. Probiotics in marine larviculture. FEMS Microbiol Rev. 2006;30:404-27. 
  32. Yufera M, Moyano FJ, Martinez-Rodriguez G. The digestive function in developing fish larvae and fry. From molecular gene expression to enzymatic activity. In: Yufera M, editor. Emerging issues in fish larvae research. Cham: Springer; 2018. p. 296.