DOI QR코드

DOI QR Code

Advancing the discovery of bioactive compounds, its extraction and identification from the underexplored mollusc, Cipangopaludina lecythis (W. H. Benson, 1836)

  • Ajit Kumar Ngangbam (South Asian Institute of Rural and Agricultural Management (SAIRAM)) ;
  • Bijayalakshmi Devi Nongmaithem (Department of Zoology, Manipur University) ;
  • Vu Trong Dai (Institute of Aquaculture, Nha Trang University) ;
  • Laishram Lenin (South Asian Institute of Rural and Agricultural Management (SAIRAM)) ;
  • Lakshmikanta Khundrakpam (South Asian Institute of Rural and Agricultural Management (SAIRAM)) ;
  • Laiphrakpam Pinky (South Asian Institute of Rural and Agricultural Management (SAIRAM)) ;
  • Precious Irom (South Asian Institute of Rural and Agricultural Management (SAIRAM)) ;
  • H. S. Shekhar Sharma (South Asian Institute of Rural and Agricultural Management (SAIRAM))
  • Received : 2023.11.29
  • Accepted : 2024.04.17
  • Published : 2024.09.30

Abstract

The enormous diversity of molluscs has provided humans with food, colours, medicines and shells, among other resources. Molluscs have long been utilized in traditional medicine in several countries and they are a valuable source of medical supplies for many diverse communities worldwide. The purpose of this study was to identify and assess Cipangopaludina lecythis bioactive compounds in order to determine the nature of the primary ingredient that gives its medicinal properties. C. lecythis flesh and shell extracts using polar and lipophilic solvents were analyzed using liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS). This study provides the first chemical assessment of flesh and shell-opercula of C. lecythis. Chemical analysis of flesh and shell-opercula of C. lecythis clearly showed the presence of major compounds such as chitin, allantoin, linoleic acid, dihydrotachysterol, cyclotrisiloxane hexamethyl and 6-gingerol besides other minor compounds with bioactive properties of medicinal significance. Overall, this research provides good evidence that C. lecythis produce secondary metabolites with a variety of intriguing pharmacological characteristics. They have also long been a part of traditional medicine in many human cultural groups. Its usage by traditional practitioners to treat a range of human diseases is justified by the presence of numerous medicinally significant bioactive chemicals. However, more research on the bioactive compounds found in snails is necessary to standardize the extraction techniques for their detection, quantification and formulations, to validate their in vivo efficacy, and confirm their safety.

Keywords

Acknowledgement

AKN acknowledges the financial support of SRG-SERB, DST, New Delhi. This work is a contribution to the 65th Anniversary of Nha Trang University, Vietnam.

References

  1. Ahsan T, Chen J, Zhao X, Irfan M, Wu Y. Extraction and identification of bioactive compounds (eicosane and dibutyl phthalate) produced by Streptomyces strain KX852460 for the biological control of Rhizoctonia solani AG-3 strain KX852461 to control target spot disease in tobacco leaf. AMB Express. 2017;7:54. 
  2. Ajisafe VA, Raichur AM. Snail mucus from Achatina fulica as a biomaterial exhibits pro-survival effects on human chondrocytes. ACS Biomater Sci Eng. 2023;9:4208-22. 
  3. Ali-Komi DE, Hamblin MR. Chitin and chitosan: production and application of versatile biomedical nanomaterials. Int J Adv Res. 2016;4:411-27. 
  4. Baghele M, Mishra S, Meyer-Rochow VB, Jung C, Ghosh S. A review of the nutritional potential of edible snails: a sustainable underutilized food resource. Indian J Nat Prod Resour. 2022;13:419-33. 
  5. Berrue F, Withers ST, Haltli B, Withers J, Kerr RG. Chemical screening method for the rapid identification of microbial sources of marine invertebrate-associated metabolites. Mar Drugs. 2011;9:369-81. 
  6. Bonnemain B. Helix and drugs: snails for western health care from antiquity to the present. Evid Based Complement Al-ternat Med. 2005;2:25-8. 
  7. Bouchet P. The magnitude of marine biodiversity. In: Duarte CM, editor. The exploration of marine biodiversity: scientific and technological challenges. Bilbao: Fundacion BBVA; 2006. p. 33-64. 
  8. Capuzzo A, Occhipinti A, Maffei ME. Antioxidant and radical scavenging activities of chamazulene. Nat Prod Res. 2014;28:2321-3. 
  9. Chakraborty B, Kumar RS, Almansour AI, Perumal K, Nayaka S, Brindhadevi K. Streptomyces filamentosus strain KS17 isolated from microbiologically unexplored marine ecosystems exhibited a broad spectrum of antimicrobial activity against human pathogens. Process Biochem. 2022;117:42-52. 
  10. Cordy PE. Treatment of bone disease with dihydrotachysterol in patients undergoing long-term hemodialysis. Can Med Assoc J. 1977;117:766-8. 
  11. DeMarco PV, Bill TE, Kroyak PJ, Randle LJ. Identifying opportunities to produce and market snail caviar in the Thessaloniki region. Worcester, MA: Worcester Polytechnic Institute; 2017. p. 61. 
  12. Dinica RM, Sandu C, Dediu Botezatu AV, Cazanevscaia Busuioc A, Balanescu F, Ionica Mihaila MD, et al. Allantoin from valuable Romanian animal and plant sources with promising anti-inflammatory activity as a nutricosmetic ingredient. Sustainability. 2021;13:10170. 
  13. El Mubarak MAS, Lamari FN, Kontoyannis C. Simultaneous determination of allantoin and glycolic acid in snail mucus and cosmetic creams with high performance liquid chromatography and ultraviolet detection. J Chromatogr A. 2013;1322:49-53. 
  14. Falodun A, Siraj R, Choudhary MI. GC-MS analysis of insecticidal leaf essential oil of Pyrenacantha staudtii Hutch and Dalz (Icacinaceae). Trop J Pharm Res. 2009;8:139-43. 
  15. Ibrahim AM, Morad MY, El-Khadragy MF, Hammam OA. The antioxidant and anti-inflammatory effects of Eremina desertorum snail mucin on experimentally induced intestinal inflammation and testicular damage. Biosci Rep. 2022;42:BSR20221020. 
  16. Jadhav A, Das NK, Sil M, Aravind NA. Snails on the plate: edible freshwater molluscs of Northeast India. Indian J Tradit Knowl. 2023;22:409-19. 
  17. Kolak U, Hacibekirolu I, Boa M, Ozgokce F, unal M, Iqbal Choudhary M, et al. Phytochemical investigation of Leontice leontopetalum L. subsp. ewersmannii with antioxidant and anticholinesterase activities. Rec Nat Prod. 2011;5:309-13. 
  18. Mary APF, RS Giri. Phytochemical screening and GC-MS analysis in ethanolic leaf extracts of Ageratum conyzoides (L.). World J Pharm Res. 2016;5:1019-29. 
  19. Mohamad OAA, Li L, Ma JB, Hatab S, Xu L, Guo JW, et al. Evaluation of the antimicrobial activity of endophytic bacterial populations from Chinese traditional medicinal plant licorice and characterization of the bioactive secondary metabolites produced by Bacillus atrophaeus against Verticillium dahliae. Front Microbiol. 2018;9:924. 
  20. Ngangbam AK, Mouatt P, Smith J, Waters DLE, Benkendorff K. Bromoperoxidase producing Bacillus spp. isolated from the hypobranchial glands of a muricid mollusc are capable of tyrian purple precursor biogenesis. Mar Drugs. 2019;17:264. 
  21. Nongmaithem BD, Mouatt P, Smith J, Rudd D, Russell M, Sullivan C, et al. Volatile and bioactive compounds in opercula from Muricidae molluscs supports their use in ceremonial incense and traditional medicines. Sci Rep. 2017;7:17404. 
  22. Noothuan N, Apitanyasai K, Panha S, Tassanakajon A. Snail mucus from the mantle and foot of two land snails, Lissachatina fulica and Hemiplecta distincta, exhibits different protein profile and biological activity. BMC Res Notes. 2021;14:138. 
  23. Ozcicek E, Kutluyer Kocabas F, Kocabas M, Yilmaz O. Seasonal changes in fatty acid profile of the freshwater snail Viviparus contectus (Millet, 1813) from lake habitat. Molluscan Res. 2023;43:173-80. 
  24. Prabhakar AK, Roy SP. Ethno-medicinal uses of some shell fishes by people of Kosi river basin of North-Bihar. India Stud Ethno-Med. 2009;3:1-4. 
  25. Pringgenies D, Jumiati M, Ridho A. Antibacterial activity test of nudibranches polka - dot (Jorunna funebris) (Gastropods: Molusc) extract against multi (aktivitas antibakteri ekstrak nudibranch polka-dot (Jorunna funebris) (Gastropoda: Moluska) terhadap bakteri multidrug resistant (MDR). Ilmu Kelautan: Indones J Mar Sci. 2015;20:195-206. 
  26. Pyrzynska K. Hesperidin: a review on extraction methods, stability and biological activities. Nutrients. 2022;14:2387. 
  27. Seddon BM. Molluscan diversity and impact of large dams. Prepared for thematic review II. 1: Dams, ecosystem functions and environmental restoration. Gland: IUCN; 2000. 
  28. Sallam AAA, El-Massry SA, Nasr IN. Chemical analysis of mucus from certain land snails under Egyptian conditions. Arch Phytopathol Plant Prot. 2009;42:874-81 
  29. Srinivasulu C, Ramgopal M, Ramanjaneyulu G, Anuradha CM, Kumar CS. Syringic acid (SA): a review of its occurrence, biosynthesis, pharmacological and industrial importance. Biomed Pharmacother. 2018;108:547-57. 
  30. Strong EE, Gargominy O, Ponder WF, Bouchet P. Global diversity of gastropods (Gastropoda; Mollusca) in freshwater. Freshwater Anim Divers Assess. 2008:149-66. 
  31. Toth G, Zechmeister L. Chitin content of the mandible of the snail (Helix pomatia). Nature. 1939;144:1049. 
  32. Tripathy B, Mukhopadhayay A. Freshwater molluscs of India: an insight of into their diversity, distribution and conservation. In: Rawat M, Dookia S, Sivaperuman C, editors. Aquatic ecosystem: biodiversity, ecology and conservation. New Delhi: Springer; 2015. p. 163-95. 
  33. Wang S, Zhang C, Yang G, Yang Y. Biological properties of 6-gingerol: a brief review. Nat Prod Commun. 2014;9:1027-30. 
  34. Whitehead DL, Saleuddin ASM. Steroids promote shell regeneration in Helix aspersa (Mollusca; Pulmonata). Comp Biochem Physiol C Comp Pharmacol. 1978;59:5-10. 
  35. Yonezawa M, Sakuda S, Yoshimura E, Suzuki M. Molecular cloning and functional analysis of chitinases in the fresh water snail, Lymnaea stagnalis. J Struct Biol. 2016;196:107-18. 
  36. Zhang G, Xu M, Zhang C, Jia H, Zhang H, He M, et al. Comparative transcriptomic and expression profiles between the foot muscle and mantle tissues in the giant triton snail Charonia tritonis. Front Physiol. 2021;12:632518. 
  37. Zhao D. The medicinal and economic value of Cipangopaludina chinensis. Orient Medicated Diet. 2011;3:36-7. 
  38. Zhou K, Chen Z, Du X, Huang Y, Qin J, Wen L, et al. SMRT sequencing reveals candidate genes and pathways with medicinal value in Cipangopaludina chinensis. Front Genet. 2022;13:881952. 
  39. Zhu N, Dai X, Lin DS, Connor WE. The lipids of slugs and snails: evolution, diet and biosynthesis. Lipids. 1994;29:869-75.