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This paper chronicles the evolution of load-sharing parameter estimation methodologies, with a particular focus on the significant 
contributions made by Kim and Kvam (2004) and Park (2012). Kim and Kvam's pioneering work underscored the inherent challenges 
in deriving closed-form solutions for load-share parameters, which necessitated the use of sophisticated numerical optimization 
techniques. Park's research, on the other hand, provided groundbreaking closed-form solutions and extended the theoretical frame-
work to accommodate more general distributions of component lifetimes. This was achieved by incorporating EM-type methods 
for maximum likelihood estimation, which represented a significant advancement in the field.

Unlike previous efforts, this paper zeroes in on the specific characteristics and advantages of closed-form solutions for load-share 
parameters within reliability systems. Much like the basic Economic Order Quantity (EOQ) model enhances the understanding 
of real-life inventory systems dynamics, our analysis aims to thoroughly explore the conditions under which these closed-form 
solutions are valid. We investigate their stability, robustness, and applicability to various types of systems. Through this compre-
hensive study, we aspire to provide a deep understanding of the practical implications and potential benefits of these solutions. 
Building on previous advancements, our research further examines the robustness of these solutions in diverse reliability contexts, 
aiming to shed light on their practical relevance and utility in real-world applications.
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1. Introduction1)

Load-sharing models are crucial in reliability engineering, 
particularly for systems where component failure rates are 
interdependent. Load-sharing parameter estimation is vital for 
accurately assessing the reliability of complex systems where 
the failure of one component influences the performance and 
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failure rates of others. This is particularly important in in-
dustries such as aerospace, automotive, and manufacturing, 
where system reliability is crucial for safety, performance, 
and cost-effectiveness. Accurate estimation of load-sharing 
parameters enables engineers to design more reliable systems, 
optimize maintenance schedules, and reduce operational costs 
by preventing unexpected failures. Furthermore, under-
standing the behavior of load-sharing parameters under differ-
ent conditions aids in the development of robust reliability 
models that can adapt to real-world scenarios, thereby enhanc-
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ing the predictive capabilities and resilience of engineering 
systems. 

The seminal work by Kim and Kvam [5] laid the ground-
work by addressing the complexity of estimating load-sharing 
parameters. However, they faced limitations in deriving 
closed-form solutions, resulting in a reliance on numerical 
optimization techniques. Building on the foundation laid by 
Kim and Kvam [5], recent advancements have further en-
riched the field of load-sharing reliability models. For in-
stance, Singh et al. [8] applied both classical and Bayesian 
estimation methods to k-component load-sharing parallel sys-
tems, highlighting the impact of failure dependencies among 
components. Gurov and Utkin [3] introduced load-share reli-
ability models with piecewise constant loads, offering a 
nuanced approach that better captures real-world system 
variability. Park [7] utilized the Expectation-Maximization 
algorithm to enhance parameter estimation accuracy in 
load-sharing systems. Ahmed [1] further contributed by pre-
senting a Bayesian framework for reliability estimation using 
progressive Type-II censoring from a two-parameter bath-
tub-shaped lifetime model, showcasing the benefits of 
Bayesian methods in reliability assessments. Additionally, 
Ivanova and Kochetkova [4] explored the reliability character-
istics of k-out-of-n systems, providing valuable insights into 
how load-sharing affects system reliability. 

More recently, Chen and Hao [2] proposed a novel load 
allocation policy for reliability emprovement of load-sharing 
systems. In their policy, based on components’ periodically 
inspected degradation states, the whole system load will be 
allocated to surviving components according to their current 
and predictive degradation states. They showed this kind of 
policy can lead to effective and robust reliability improvement 
compared to the traditional equal load allocation policy.  

Collectively, these contributions have significantly ad-
vanced the understanding and methodology of load-sharing 
parameter estimation in reliability systems. The integration 
of classical, Bayesian, and Expectation-Maximization techni-
ques has provided robust frameworks for addressing the com-
plexities of interdependent failure rates and varying load-shar-
ing conditions. These advancements not only enhance compu-
tational efficiency but also improve the accuracy and robust-
ness of reliability assessments.

Among these advancements, Park [6] made a particularly 
noteworthy contribution by proposing closed-form solutions 
for load-sharing parameters. He extended the methodology 
to accommodate more general distributions of component life-

times, enhancing the model's applicability. 
However, Park [6] did not investigate the characteristics 

of closed-form solutions for load-share parameters. In this 
study, we perform thorough investigations to provide deeper 
insights into the behavior, limitations, and practical applica-
tions of these solutions.

The remaining structure of this research is as follows. 
Chapter 2 discusses the development and application of 
closed-form solutions for load-sharing parameter estimation, 
examining methodologies proposed by various researchers 
and comparing their effectiveness in different reliability 
scenarios. Chapter 3 presents a detailed sensitivity analysis 
to understand how variations in load-sharing parameters im-
pact system reliability, exploring the implications of parame-
ter changes and providing insights into optimizing reliability 
through effective parameter management. Chapter 4 summa-
rizes the key findings of the study, discussing their practical 
implications and contributions to the field of reliability en-
gineering, emphasizing advancements in load-sharing param-
eter estimation and suggesting directions for future research.

2. Closed Form Solutions

2.1 Kim and Kvam [5] - The Numerical 

Solutions

Kim and Kvam [5] introduced a significant approach for 
reliability estimation in multi-component load-sharing systems. 
Their study focused on systems where the failure of one compo-
nent increases the load on the remaining components, thereby 
affecting their failure rates.

Kim and Kvam’s A pproach
1. Load-Sharing Concept:
∙In a multi-component system, as components fail one 

by one, the total load applied to the system is redis-
tributed among the remaining surviving components. 
This is referred to as load-sharing.

∙Kim and Kvam introduced unknown load-share parame-
ters to describe the increased failure rates of surviving 
components upon each sequential failure of other 
components.

2. Mathematical Formulation:
∙The system consists of k components with identical ini-
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tial failure rates.
∙Upon the first failure, the initial (nominal) failure rate 

  of the surviving components changes to r1  , upon 
the second failure to r2  , and so on, until (k-1)th failure.

∙The likelihood function for the ith system and the like-
lihood based on n observed samples are presented in 
the following equations respectively: 

∣⋯ 

       
  




  



 
∣  

  






           
  




  



  

where        ≤  ≤   ≤  ≤     and 
   .

3. N umerical Optimization:
Taking the logarithm of (2.1), differentiating with respect 

to  , r1, r2, ..., rk-1, denoting partial derivative with respect 
to   as L=∂log L/∂  and partial derivative of logL with 
respect to rj-1 as Lj-1=∂log L/∂rj-1 we have:

  




  




  



  ⋯ (2.2)

  




  



     ⋯ (2.3)

∙Kim and Kvam could not derive closed-form solutions 
for the maximum likelihood estimators (MLEs) of the 
parameters  , r1, r2, ..., r₋1.

∙Instead, they proved the existence of a unique solution 
that maximizes the likelihood function and adopted a 
numerical optimization methodology, specifically the 
Gauss-Seidel method, to compute these parameter 
estimates.

Steps in Kim and Kvam's N umerical Method:
∙Define the likelihood function for the system based on 

observed data.
∙Prove the existence of a unique solution for the MLEs 

of the parameters.
∙Apply the Gauss-Seidel iterative method to numerically 

estimate the parameters  , r1, r2, ..., r-1.
This approach, while effective, required significant compu-

tational effort due to the iterative nature of the numerical 
optimization process.

2.2 Park [6] - Closed-Form Solution

In contrast to the numerical methods employed by Kim 
and Kvam [5], Park [6] managed to find closed-form solutions 
for the estimation of load-sharing parameters. This repre-
sented a significant advancement in the field by providing 
a more computationally efficient methodology.

Park’s A pproach
1. Extension of Load-Sharing Model:
∙Park extended the load-sharing model to accommodate 

more general distributions of component lifetimes, rather 
than assuming identical initial failure rates for all 
components.

2. Closed-form MLEs:
∙Park derived closed-form solutions for the MLEs of the 

parameters θ, r₁, r2, ..., r-1.
∙The process involved taking the logarithm of the like-

lihood function, differentiating with respect to each pa-
rameter, and setting the derivatives equal to zero to find 
the maximum likelihood estimates.

Steps in Park’s Solution Method:
1. Log-likelihood Function:

  ∙Identical with Kim and Kvam [5]

2. Partial D erivatives:
  ∙Identical with Kim and Kvam [5]

3. Solving Equations:

∙From Eqs 2.2 and 2.2, denote ∙ 
  



 to have 

  




  




  



 ∙  ⋯ (2.4)
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
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

∙      ⋯ (2.5)

∙From (2.5) rj-1 can be shown to have a simple form as

 ∙


    ⋯ (2.6)
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∙ Since r0=1, Eq (2.4) can be rewritten as

  


∙  

  



 ∙  ⋯ (2.7)

∙From Eq(2.6) and Eq(2.7) one can easily solve the result-
ing set of equations simultaneously to obtain the 
closed-form expressions for   and rj as following:
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
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∙The closed-form solutions for   and rj are derived ex-

plicitly, allowing direct computation without iterative 
methods.

A dvantages of Park’s Method:

1. Efficiency:
  ∙The closed-form solutions are computationally more 

efficient compared to iterative numerical methods.

2. Robustness:
  ∙The closed-form approach provides a more straightfor-

ward and potentially more accurate estimation process.

By comparing the numerical solutions of Kim and Kvam 
with the closed-form solutions of Park, we can appreciate 
the significant advancements made in the field of load-sharing 
parameter estimation. Park's method not only enhances com-
putational efficiency but also improves the robustness of reli-
ability assessments in systems with interdependent failure 
rates.

3. Senstivity Analysis

3.1 Simulation Data

To illustrate the effectiveness and accuracy of the 
closed-form solution we reused the simulation data presented 

in Kim and Kvam [5] which are failure times generated by 
the parameters (  =0.1, r1=1.5, r2=3). The simulated data are 
listed in <Table 1> and the load-share parameter estimators 
are listed in <Table 2>.

<Table 1> Failure Times for Load-Share Samples

n ti1 ti2 ti3

1 1.94 0.37 6.93
2 7.44 0.06 2.42
3 0.14 0.2 0.2
4 2.14 1.62 2.34
5 1.91 5.7 1.96
6 8.23 2.25 4.6
7 1.4 2.5 0.07
8 0.79 2.44 7.27
9 0.92 0.12 0.06

10 0.73 0.79 8.61
11 2.78 0.2 1.38
12 0.85 2.81 5.05
13 8.5 1.03 0.52
14 12.93 5.67 1.11
15 4.46 9.06 3.54
16 3.5 5.67 3.24
17 19.59 0.32 1.89
18 4.93 0.12 3.85
19 10.29 2.58 8.61
20 2.22 1.73 1.22

From the above failure-time data if we apply the closed 
form formula we get

∙


× 


≈ ⋯⋯ (2.10)

 ∙

∙
 × 

× 
≈ (2.11)

  × 

× 
≈ ⋯⋯ (2.12)

<Table 2> Load-share Parameter Estimators

r1 r2 θ

Actual Parameter 1.5 3.0 0.1
MLE(Kim_Kvam) 1.7875 3.2393 0.1

MLE(Closed Form) 3.1727 4.4253 0.0697

 
The difference between closed-form MLE and numerical 

MLE (Kim-Kvam method) is primarily due to model assump-
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tions, initial estimates, numerical stability, model fit, and data 
characteristics. 

D ifferences B etw een Closed-form MLE and N umerical 
MLE:

1. Model A ssumptions:
∙Closed-form MLE (Park's Method): Assumes a specific 

mathematical form for the likelihood function, enabling 
the derivation of explicit solutions for the parameters. 
This method relies on the assumption that the underlying 
model accurately represents the real-world system.

∙Numerical MLE (Kim and Kvam's Method): Utilizes 
numerical optimization techniques to find parameter esti-
mates without requiring explicit closed-form 
expressions. This method can handle more complex 
models where closed-form solutions are not feasible, but 
it assumes that the iterative optimization process will 
converge to the true parameter values.

2. Initial Estimates:
∙Closed-form MLE: Does not require initial parameter 

estimates as it provides direct solutions. This can be 
advantageous as it eliminates the potential bias in-
troduced by selecting inappropriate initial values.

∙Numerical MLE: Requires initial parameter estimates 
to start the iterative optimization process. The quality 
of the final estimates can be sensitive to the choice of 
these initial values, potentially leading to suboptimal sol-
utions if the initial values are not chosen carefully.

3. N umerical Stability:
∙Closed-form MLE: Provides explicit formulas for the 

parameter estimates, which are numerically stable and 
do not suffer from convergence issues. This makes the 
closed-form method more reliable for obtaining con-
sistent parameter estimates.

∙Numerical MLE: Involves iterative optimization, which 
can sometimes be unstable and sensitive to numerical 
errors. Convergence to the true parameter values is not 
always guaranteed, particularly in cases where the like-
lihood surface is complex with multiple local maxima.

4. Model Fit:
∙Closed-form MLE: By providing direct solutions, the 

closed-form method ensures that the parameter estimates 

are consistent with the assumed mathematical model. 
However, this method might be less flexible in accom-
modating deviations from the model assumptions.

∙Numerical MLE: Offers greater flexibility in fitting 
complex models to the data, as it does not require ex-
plicit closed-form solutions. This can result in better 
model fit in cases where the true underlying system be-
havior deviates from the assumptions of the closed-form 
model.

5. D ata Characteristics:
∙Closed-form MLE: May be more sensitive to deviations 

from the assumed data distribution, as it relies on specific 
mathematical forms. This can be a limitation in practical 
applications where real-world data may not perfectly ad-
here to theoretical distributions.

∙Numerical MLE: Can better accommodate noisy or 
non-ideal data, as the iterative optimization process can 
adapt to the data characteristics. This makes the numer-
ical method more robust in handling real-world data 
variability.

6. Comparison of Results:
In our analysis, we applied both methods to the simulated 

data. The closed-form MLE values obtained using Park's 
method and the numerical MLE values obtained using Kim 
and Kvam's method are listed in <Table 2>. 

The results indicate that the numerical MLE values are 
closer to the true parameter values compared to the 
closed-form MLE values. This difference can be attributed 
to the factors discussed above. The numerical method's iter-
ative approach allows it to better capture the complexity and 
noise in the data, resulting in parameter estimates that are 
more aligned with the true values. In contrast, the closed-form 
method, while computationally efficient, may introduce some 
bias due to the strict assumptions of the underlying model.

The findings suggest that while closed-form solutions offer 
significant computational advantages and can provide quick 
and reliable estimates under ideal conditions, numerical opti-
mization techniques remain valuable, especially when dealing 
with complex and noisy real-world data. Therefore, the choice 
between closed-form and numerical methods should be guided 
by the specific characteristics of the data and the system being 
analyzed. A comprehensive approach that combines both 
methods may offer the best balance between computational 
efficiency and estimation accuracy.
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Scenarios θ r1 r2

1 0.0488 2.2209 3.0977
2 0.0488 2.2209 4.4253
3 0.0488 2.2209 5.7529
4 0.0488 3.1727 3.0977
5 0.0488 3.1727 4.4253
6 0.0488 3.1727 5.7529
7 0.0488 4.1245 3.0977
8 0.0488 4.1245 4.4253
9 0.0488 4.1245 5.7529

10 0.0697 2.2209 3.0977
11 0.0697 2.2209 4.4253
12 0.0697 2.2209 5.7529
13 0.0697 3.1727 3.0977
14 0.0697 3.1727 4.4253
15 0.0697 3.1727 5.7529
16 0.0697 4.1245 3.0977
17 0.0697 4.1245 4.4253
18 0.0697 4.1245 5.7529
19 0.0906 2.2209 3.0977
20 0.0906 2.2209 4.4253
21 0.0906 2.2209 5.7529
22 0.0906 3.1727 3.0977
23 0.0906 3.1727 4.4253
24 0.0906 3.1727 5.7529
25 0.0906 4.1245 3.0977
26 0.0906 4.1245 4.4253
27 0.0906 4.1245 5.7529

<Table 4> Parameter Table3.2 Sensitivity Analysis of Load-Share Parameters 

on the Average System Reliability

Sensitivity analysis is very useful for understanding the 
impact of specific parameters on the model's results. Through 
sensitivity analysis, we can determine the importance of spe-
cific parameters and evaluate the reliability of the model. 

Setting up the base model : The base model uses the esti-
mated values of      .

Defining Parameter Ranges
    ±  ∼

   ±  ∼ 

   ±  ∼

Analysis Scenario : In our sensitivity analysis, we generated 
scenarios by varying each parameter within their defined 
ranges. Specifically, we considered each parameter at three 
levels: minimum, median, and maximum values, resulting 
in the following approach:

<Table 3> 3 Levels of Parameter Estimates

Parameter Values r1 r2 θ

Minimum (30% below) 2.2209 3.9828 0.0488
Median (estimated) 3.1727 4.4253 0.0697

Maximum (30% above) 4.1245 5.7529 0.0906

<Table 4> lists all 27 scenarios generated by varying each 
parameter at 30% below, at, and 30% above their estimated 
values. We can use this table to perform the sensitivity analysis 
and analyze how changes in each parameter affect the model's 
reliability where the reliability function R(t) is defined as 
follows:

   ∙   ⋯  (2.13)

The mean reliability is then obtained by averaging the reli-
ability values of all samples (in our case, n=20):

  



  



  ⋯   (2.14)

It can be observed from Figure1 that as the 𝜃 value increases, 
reliability decreases sharply. When the 𝜃 value increases from 
0.0488 to 0.0697, reliability decreases significantly, and even 

when it increases from 0.0697 to 0.0906, reliability approaches 
nearly zero. As the system's failure rate increases, reliability 
decreases very rapidly. Therefore, reducing the failure rate 
is crucial for maintaining the system's reliability.

<Figure 1> Parameter θ on Mean Reliability
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This emphasizes the importance of maintenance strategies 
and preventive management.

<Figure 2> Parameter r1 on Mean Reliability

In <Figure 2>, as the  value increases, reliability decreases. 
However, compared to 𝜃, the rate of decrease is relatively 
moderate. This means that while the  value affects reliability, 
it is not as impactful as 𝜃. Therefore, managing the load 
share parameter  after the first failure is also important. 
As the  value increases, reliability decreases, so it is necessary 
to optimize the distribution of load the system experiences 
after the first failure to maintain reliability.

In <Figure 3>, as the ​ value increases, reliability tends 
to decrease, showing a pattern similar to . However, the 
decrease is slightly more pronounced compared to . The 
load share parameter  after the second failure also has a 
significant impact on reliability. As the  value increases, 
reliability decreases, so it is crucial to effectively manage 
the distribution of load the system experiences after the second 
failure. 

<Figure 3> Parameter r2 on Mean Reliability 

Reducing the system's failure rate is crucial for enhancing 
reliability, which can be achieved through preventive main-
tenance and regular inspections. Additionally, it is necessary 
to manage load share parameters effectively, as they impact 
reliability, by optimizing load distribution after failures using 
load balancing techniques and appropriate redesign. A com-
prehensive maintenance strategy that considers both failure 
rates and load share parameters is essential for improving 
system reliability and reducing operational costs.

4. Conclusion

This paper has delved into the evolution and advancement 
of load-sharing parameter estimation methodologies within 
reliability systems, specifically focusing on the transition from 
numerical optimization techniques to closed-form solutions. 
Building upon the seminal works of Kim and Kvam (2004) 
and Park (2012), this study explored the characteristics, ro-
bustness, and practical applications of these closed-form sol-
utions in various reliability contexts.

Kim and Kvam's pioneering efforts highlighted the inherent 
complexity in estimating load-sharing parameters due to the 
interdependent failure rates in multi-component systems. 
Their reliance on numerical methods, such as the Gauss-Seidel 
method, underscored the challenges in deriving closed-form 
solutions. Park's subsequent advancements provided a sig-
nificant leap forward, offering closed-form solutions that en-
hance computational efficiency and robustness in parameter 
estimation.

Through sensitivity analysis, this research demonstrated 
the critical impact of load-share parameters on system 
reliability. The analysis revealed that while the system's fail-
ure rate is a major determinant of reliability, the load-sharing 
parameters post-failure also play a significant role. This un-
derscores the importance of a comprehensive maintenance 
strategy that not only aims to reduce failure rates but also 
optimizes load distribution among surviving components after 
failures. 

The findings of this study have several practical 
implications. Firstly, they suggest that while numerical opti-
mization techniques remain valuable, closed-form solutions 
offer a more efficient and sometimes more accurate alternative 
for certain reliability systems. Secondly, the sensitivity analy-
sis emphasizes the need for effective load management and 
preventive maintenance strategies to enhance system reli-
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ability and reduce operational costs. 
In conclusion, this research contributes to a deeper under-

standing of load-sharing parameter estimation in reliability 
engineering. By comparing numerical and closed-form meth-
ods, and highlighting the conditions under which closed-form 
solutions are advantageous, this study provides valuable in-
sights for both researchers and practitioners in the field. Future 
research could further explore the applicability of these sol-
utions in more complex and diverse reliability systems, poten-
tially integrating other advanced estimation techniques to en-
hance robustness and accuracy.
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