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In an influential paper, Choi and Kim (2010) derived waiting times in an  queuing model under net neurality and 
under prioritization. In this short paper, we argue that the waiting times of content transmission that Choi and Kim (2010) derived 
by using the  gueuing model under the non-preemptive priority rule are miscalculated. We provide corrected waiting 
times in the  queuing model in the prioritization case. We also show that this correction does not affect their main 
results on the delay time and the incentive to invest in the network capacity qualitatively.
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1. Introduction1)

In 2017, U.S. Federal Communications Commission (FCC) 
dismantled the net neutrality regulations that prohibited 
Internet service providers (ISP) from blocking websites or 
charging for higher-quality service or certain content. This 
means that ISPs are given free rein to deliver service at their 
own discretion, that is, to discriminate contents by blocking, 
throttling and prioritization etc.

There are many important static and dynamic issues regard-
ing net neutrality. First of all, it is an important issue whether 
repealing net neutrality and giving priorities to some content 
providers may help alleviate delays in content transmission 
due to heavy traffic. From a dynamic perspective, it is also 
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important to examine whether ISPs will have a stronger in-
centive to improve the transmission quality by increasing the 
network capacity.

For years, queuing models have been adopted to address 
congestion problems in areas of priority pricing and network 
neutrality, since Choi and Kim [2] and Cheng et al.[1]. It 
is well known that queuing models give a good approximation 
for the arrival process in communication networks where 
many service requests compete transmission under limited 
bandwidth. Among many queuing models,  models 
have found the widest range of application in most areas. 
In  system, Poisson arrivals with rate  are assumed. 
That is, interarrival times between two adjacent arrivals are 
exponentially distributed with mean . This feature well 
suits the random nature inherent in the consumer requests 
in communications networks. The system has one server, serv-
ice times of which are exponentially distributed with mean 
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. The term  is thus the service rate, or the average 
number of services performed in unit time. Choi and Kim 
[2] interpret it as bandwidth in communications networks.1)

By using an  model, Choi and Kim [2] derive the 
waiting time elegantly and beautifully and established the 
invariance result that given a fixed network capacity, the aver-
age waiting times are identical regardless of net neutrality. 
They also showed that the ISP’s incentive to invest may be 
weaker under prioritization, because an increase in the net-
work capacity reduces the relative value of prioritized 
contents. They call this the rent extraction effect.

In this short paper, we argue that the waiting times of 
content transmission that Choi and Kim [2] derived by using 
the  queuing model under the non-preemptive priority 
rule are miscalculated. We will provide corrected waiting 
times in the  queuing model in the prioritization case. 
We also show that this correction does not alter their static 
and dynamic results on the delay time and the incentive to 
invest in the network capacity qualitatively.

2. Model

We closely follow the model of Choi and Kim [2]. End 
users are uniformly distributed over [0, 1]. So, the mass of 
end users is normalized to one. CP1 and CP2 are located 
in    and    respectively. Each consumer request con-
tents from one of the content providers and gets some valu-
ation  . The unit transportation cost is .

A monopolistic Internet service provider (ISP) has  serv-
ers with identical capacity.

Under net neutrality, both the interarrival time of content 
requests and the service time of each server of the ISP are 
assumed to follow exponential distributions with  and . 
That is, the mean of the time between content requests is 
 and the mean of the service time is . As usual, we 
assume that    to avoid the possibility that the waiting 
time will explode. Under no net neutrality, let  and  

1) Economides and Hermalin [3] model bandwidth and prioritized service 
in a different way. Instead of a queuing model, they use a sub-bandwidth 
model in which ISP allocates a wider sub-bandwidth to a prioritized 
CP. In other words, unlike the  queuing model in which 
the ISP processes prioritized contents before unprioritized contents, 
prioritized contents and unprioritized contents are assumed to use 
separate portions of the bandwidth (fast lane and slow lane, re-
spectively) in their model.

be the rate parameters of the exponential distributions that 
the interarrival times of content requests from CP1 and CP2 
follow respectively.

Our main interest in this paper is how the repeal of net 
neutrality could affect the average waiting time (transmission 
time) of data that end users request. To compute the waiting 
times under two different regimes (net neutrality vs. no net 
neutrality), we borrow some established results in queuing 
theory. 

3. Preliminaries

We consider a system in which customers arrive at rate 
 according to a Poisson process and a server serves custom-
ers one at a time from the front of the queue on a first-come, 
first-served basis. Service times of each server have an ex-
ponential distribution with rate parameter .

It is useful to define server utilization by    to charac-
terize waiting times. It has an interpretation as the probability 
that a server is occupied at arbitrary point in time. We assume 
that     . Otherwise, the number of customers in the 
system, and in turn the average waiting time will eventually 
explode.

No Priority  The average number of customers in the sys-

tem, denoted by  , is calculated as   
  

∞

, where  

is the probability that there are  customers in the system 
at arbitrary point in time. It is well known for  that 
{} is a geometric sequence with the common ratio ,2) 
and that the resulting sum is

 




 . (1)

The average waiting time in system, denoted by , is 
obtained using Little’s Law,   , as

 




 . (2)

Note that  is the average total time spent in the system.3) 

2) See, for example, Gross and Harris [4].
3)  is also called system time, sojourn time, or response time, etc. 

in literature.
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Since a customer has to wait not only in queue but also 
for his own service time, the average total waiting time con-
sists of two components: the average time in queue,  , 
and the average time in service,  . That is,     . 
From this relation, we can compute  alternatively as:

    


 




 . (3)

The first term, , is computed by using the PASTA 
(Poisson Arrivals See Time Averages) property saying that 
an arrival (arriving customer) from a Poisson process sees 
  customers on average, each of which is expected to have 
service time with mean .

Since   , we can obtain the average time in queue 
as

   


 







 . (4)

Little’s Law holds in any queuing system, and particularly, 
it applies to systems within a system. Since queue (waiting 
line) itself is one subsystem and a server is another, Little’s 
Law could be applied to each one, as well as the whole 
system.

The intuition underlying behind Little’s Law is quite clear. 
It simply states that the average number of customers in a 
system or a subsystem (total quantity) must be equal to the 
average arrival rate of the customers (speed), multiplied by 
the average time that a customer spends in that system (total 
time). It always holds regardless of the interarrival time dis-
tribution or service time distribution, nor does it depend upon 
the number of servers in the system or queuing discipline 
within the system. For example, if we apply Little’s Law 
to the waiting time (queue) only, we can find the average 
number of customers in queue as

   



. (5)

This implies that we can also find the average number 
of customers who are served as

     






  . (6)

Priority  Now, we consider an  system serving 

two different types of customers, type 1 and type 2. Type 
1 and type 2 customers arrive according to independent 
Poisson processes with rate  and  respectively. We as-
sume that    , where   , i.e., the occupation 
rate by type  customers. Type 1 customers are prioritized 
over type 2 customers.

First, we assume the non-preemptive priority system   
Choi and Kim [2]. Under this priority system, even prioritized 
type 1 customers are not allowed to interrupt the service of 
unprioritized type 2 customers.

The average waiting time for prioritized type 1 customers 
is computed as

  





 

 , (7)

where   is the average number of type  customers in the 
system. The first term is the waiting time for the services 
for type 1 customers to be completed, i.e., the service time 
type 1 customers in the system. This is again due to the 
PASTA property. The second term comes from the fact that 
when an arriving type 1 customer finds a type 2 customer 
in service, he has to wait until the service of the type 2 
customer is completed. According to the PASTA property, 
the probability that he finds a type 2 customer in service 
is equal to the fraction of time the server spends on type 
2 customer, . The third term is the average service time 
of his own. Thus, we can rewrite (7) as

    . (8)

where   




  and   

 .

Equation (7), together with Little’s Law given by 
  , leads to

 

 , (9)

 


. (10)

Equation (10) implies that the waiting time of prioritized 
customers must depend on . This is due to the second 
term of (7). Intuitively, a newly arriving customer must wait 
in the front of the queue while a type 2 customer is in service 
(if any), even if the arriver is prioritized, under the non-pre-
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emptive priority rule. Note that  does not enter equation 
(2) of Choi and Kim [2] that assumes the non-preemptive 
priority rule. 

For the waiting time of unprioritized type 2 customers, 
we need the following relation:

     

  , (11)

which can be similarly derived as (1). Then, from (9) and 
(11), we obtain

     

  . (12)

Therefore, by applying Little’s Law we obtain the average 
waiting time of unprioritized customers as 

  

 
. (13)

Equation (13) can be rewritten as

   , (14)

where   
  

  
   for any 

  . This implies that    for any    .
On the other hand, in the preemptive priority rule under 

which a newly arriving type 1 customer is allowed to interrupt 
the service time of an unprioritized type 2 customer, the com-
putation of the average waiting time for type 1 customers 
is relatively simple, because an arriving type 1 customer does 
not need to worry about the possibility that type 2 customers 
are in queue or in service. Therefore, the situation is the 
same for a type 1 customer as if there were only type 1 
customers in the system. This leads to

 




 , (15)

 




 . (16)

Then, by using (11), we get

     

 . (17)

By applying Little’s Law, we obtain

     


 



       





 (18)

where    .
While the waiting time of the prioritized customers depends 

on  in the non-preemptive priority rule, because they cannot 
interrupt the services for unprioritized customers, the waiting 
time for the prioritized customers does not depend on  
in the preemptive priority rule, because they can always inter-
rupt the service for type 2 customers and regard them as 
nonexistent null players.

The upshot is that under the non-preemptive priority rule 
which Choi and Kim [2] assumed, their result on the waiting 
times is not correct, while their result is correct if the pre-
emptive priority rule is assumed.

4. The Effects of Prioritization on Waiting 
Times

Under net neutrality, all contents from either CP are equally 
treated by ISP. So, the average waiting time of contents from 

either CP is identically  

 .

A consumer chooses to request contents from a CP that 
yields a lower total cost defined by the sum of waiting time 
and the transportation cost. Let  be the location of the 
consumer who is indifferent between two CPs. Then, it is 

clear that   

 , because the waiting times of CP1 and 

CP2 are the same.
If net neutrality is repealed, ISP can grant priority to either 

CP. We will consider both priority rules, the preemptive prior-
ity rule and the non-preemptive priority rule.

Let  be the borderline consumer under the preemptive 
priority rule. Since  is the ratio of users who request con-
tents from CP1, the total amounts of content requests from 
CP1 and CP2 are   , and     
respectively. Then  is determined by


 

 , (19)

where
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


 , (20)




 . (21)

This leads to

  


 





 . (22)

It is clear that   

 , because 
 

 .

If we denote the average waiting time under the preemptive 
priority rule by , we have  

 
. 

Then, the invariance result of Choi and Kim [2] follows.

Proposition 1. (Choi and Kim [2]).   .

It says that the invariance result holds in the case of the 
preemptive priority rule.

Now, consider the non-preemptive priority rule. Let  
be the borderline consumer under the non-preemptive priority 
rule. Then, the total amounts of content requests from CP1 
and CP2 are    and     respectively. 
Similarly,  is determined by

  


 





 ,  (23)

where







 ,    (24)


 

 .    (25)

Similarly, the average waiting time under the non-pre-
emptive priority rule is  




 . 
Then, we have

Proposition 2.   .

This proposition says that the invariance result also holds 
in the case of the non-preemptive priority rule. 

It is not surprising that the invariance result holds in both 
priority regimes, because the repeal of net neutrality simply 
affects the order of serving content requests as long as the 
total amount of traffic remains the same.4)

5. The Effect on the Investment in the 
Network Capacity

Choi and Kim [2] showed that the ISP’s incentive to invest 
may be weaker in the case of prioritization under the pre-
emptive priority rule,5) because an increase in the network 
capacity reduces the relative value of prioritized contents. 
They call this the rent extraction effect.6)

 

Proposition 3. In M/M/1 queuing model, 

 
   

under both the preemptive priority rule and the non-pre-
emptive priority rule.

This proposition says that as ISP invests more in network 
capacity, the quality difference between prioritized contents 
and unprioritized contents becomes smaller, i.e., the relative 
value of prioritized contents becomes lower. This implies 
that ISP will have less incentive to invest in the network 
capacity.

This result was first established by Choi and Kim [2] only 
for the case of the preemptive priority rule. In Appendix, 
we provide a proof for the case of the non-preemptive priority 
rule as well. Therefore, Proposition 3 complements their result 
in the sense that it extends the result to the case of the non-pre-
emptive priority rule.

6. Conclusion

In this paper, we showed that the invariance result that 
Choi and Kim [2] obtained holds both under the preemptive 
rule and under the non-preemptive rule. We also showed that 

4) Kim [5] argues that the invariance result does not hold if the request 
rate for prioritized contents is higher than the request rate for un-
prioritized contents or contest under net neutrality.

5) What they actually showed was that the effect on the investment 
in the network capacity due to the rent extraction effect is negative 
under the preemptive priority rule, not under the non-preemptive 
priority rule.

6) In addition to the rent extraction effect, they identified another effect 
of prioritization which they call access fee effect. If an ISP invests 
in network capacity, it can raise the access fee because it increases 
the utility of end users. Since the improvement in the transmission 
time differs across CPs under prioritization, the effect is ambiguous. 
So, we focus only on the rent extraction effect by assuming that 
the access fee is zero.
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the rent extraction effect of an investment in the network 
capacity that Choi and Kim [2] identified is valid both under 
the preemptive rule and under the non-preemptive rule. We 
believe that it will be worthwhile to extend this model to 
the case that there are several servers by using the  
queuing model to provide an analysis for a more natural inter-
pretation of the network capacity as the number of servers.
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Appendix

Proof of Proposition 1: The waiting time under the pre-
emptive priority rule is

  




 
  




 

 

  

 

 

 












 

Proof of Proposition 2: Under the preemptive priority rule, 
we have

  




 
 

 
 

 

 


 



 

 





 

 



 











 

Proof of Proposition 3: Under the preemptive priority re-
gime, we have

   


 









 . (26)

Note that ′    for any ∈. Also, note that 
   , for any   . Assuming the uniqueness of the 

solution for , we obtain 


  , i.e., 





  . 

Similarly, under the non-preemptive priority rule, we have

  


 
 (27)

We have 







 

  (28)

 


 



  (29)

Since    and   , we have 


 . Also, 

note   



 



  for any   . Therefore, it 

follows from the uniqueness of the solution that 





 

  (See <Figure 1>.)

<Figure 1> The Effect of an Increase in  ′    on 

    


