Acknowledgement
Open access funding provided by Universita degli Studi dell'Aquila within the CRUI-CARE Agreement.
References
- Giese, R.D., Hesla, E.: Power management for data centers: challenges and opportunities. IEEE Ind. Appl. Mag. 27(6), 47-52 (2021). https://doi.org/10.1109/MIAS.2021.3070739
- de Paulis, F, Rabinovich, R., Mellitz, R., et al.: Feasibility analysis of chip-to-module channel operating at 212 Gbps. In: 26th IEEE Workshop on Signal and Power Integrity, pp. 1-4 (2022). https://doi.org/10.1109/SPI54345.2022.9874926
- Kang, W.-T., He, K., Lei, Y., et al.: A novel LVDC superconducting power distribution system for data center with power quality improvement and loss reduction. IEEE Trans. Appl. Supercond. 31(8), 1-4 (2021). https://doi.org/10.1109/TASC.2021.3103709
- de Paulis, F., Ding, Y., Cocchini, M., et al.: A methodical approach for PCB PDN decoupling minimizing overdesign with genetic algorithm optimization. In: IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity, pp. 238-243 (2022). https://doi.org/10.1109/EMCSI39492.2022.9889490
- Zhu, W., Wang, Y., Dong, G., et al.: MTL-based modeling and analysis of the effects of TSV noise coupling on the power delivery network in 3D ICs. J. Comput. Electron. 19, 543-554 (2020). https://doi.org/10.1007/s10825-020-01466-w
- Wang, Y., Dong, G., Xiong, W., et al.: Impedance modeling and analysis of multi-stacked on-chip power distribution network in 3D ICs. J. Comput. Electron. 21, 1282-1292 (2022). https://doi.org/10.1007/s10825-022-01947-0
- Cecchetti, R., de Paulis, F., Olivieri, C., et al.: Effective PCB decoupling optimization by combining an iterative genetic algorithm and machine learning. Electronics 9(8), 1243 (2020). https://doi.org/10.3390/electronics9081243
- Zednicek, T.: High CV MLCC DC/AC bias aging capacitance loss explained. In: 2nd PCNS Passive Components Networking Symposium. Hot Panel Discussion Inputs (2019)
- Biba, D.-R., Musuroi, S., Svoboda, M.: A new approach to lifetime and loading stress level estimation for multilayer ceramic capacitors in electronic control units. In: International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), pp. 37-42 (2017). https://doi.org/10.1109/OPTIM.2017.7974944
- Sunetci, O.: Determination of the effects for capacitor lifetime with Six Sigma DoE. In: Reliability and Maintainability Symposium, pp. 1-5 (2014). https://doi.org/10.1109/RAMS.2014.6798486
- Novak, I.: Probes and setup for measuring power-plane impedances with vector-network analyzer. DesignCon 1999. Santa Clara (1999)
- Kulkarni, C.S., Celaya, J.R., Biswas, G., et al.: Accelerated aging experiments for capacitor health monitoring and prognostics. In: IEEE AUTOTESTCON, pp. 356-361 (2012). https://doi.org/10.1109/AUTEST.2012.6334580
- Liu, H., Claeys, T., Pissoort, D., et al.: Prediction of capacitor's accelerated aging based on advanced measurements and deep neural network techniques. IEEE Trans. Instrum. Meas. 69(11), 9019-9027 (2020). https://doi.org/10.1109/TIM.2020.3001368
- Liu, H., Claeys, T., Pissoort, D., et al.: Long-term prediction of multistress accelerated aging of capacitors by long short-term memory network. IEEE Trans. Instrum. Meas. 72(1009106), 1-6 (2023). https://doi.org/10.1109/TIM.2021.3076837
- Di Nella, M., Olivieri, C., de Paulis, F.: Long-term reliability of PDN design based on decap aging and temperature. In: URSI-General Assembly and Scientific Symposium, pp. 1-4 (2023). https://doi.org/10.23919/URSIGASS57860.2023.10265339