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FINITE ELEMENT METHOD FOR SOLVING BOUNDARY

CONTROL PROBLEM GOVERNED BY PARABOLIC

VARIATIONL INEQUALITIES OF INFINITE ORDER

GHADA. E. MOSTAFA

Abstract. Finite element method is used here in this article to solve

boundary control problem governed by parabolic variational inequalities,
where the operator is of infinite order. In the handled problem the cost

function is quadratic w. r. to the state of the system.The error estima-

tion between the contionuous problem(P) and the discritisation problem is
obtained.
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1. Introduction

To apply Ritz and Galerkin methods on Hilbert spaces of finite dimension
such as Soboleve spaces we use the finite element method . In F.E.M. we follow
the following steps:

• Discritization of the domain Ω in a collection of subdomains which are
triangles mostly. This subdomains are called elements.

• A space H of functions defined on Ω is then approximated by appropri-
ate functions defined on each subdomain with suitable matching conditions at
interface [18].

Distributed control of a system governed by Dirichlet and Neumann problems
for elliptic equations of infinite order have been discussed by I.M.Ghali , H.A.El-
Saify and S.A.ElZahaby in (1983). Optimal control of system governed by elliptic
operator of infinite order is obtained by I.M.Ghali in (1984). Optimal control
of variational inequalities for infinite order are established by El-Zahaby and
Gh.E.Mostafa in (2005).

Received February 12, 2024. Revised May 12, 2024. Accepted June 13, 2024. ∗Corresponding

author.

© 2024 KSCAM.

1183



1184 Ghada. E. Mostafa

In this paper we shall use the theory of Barbu (1981, 1982, 1984, 1993) to
introduce boundary control problem governed by parabolic equation with non-
linear boundary value condition in the case of infinite order and will apply finite
element method.

This paper is organized as follows:
In section 2, some functional spaces of infinite order are introduced. In section

3 , we introduce the main results and the error estimation.

2- Preliminaries

A Sobolev space of infinite order of periodic functions is defined as follows:

W∞ {aα, p} =

u(x) ∈ C∞ (Rn) :

∞∑
|α|=0

aα ∥Dα(u)∥pp <∞


We recall that α = (α1, α2, . . . , αn) is a multi-index for differentiation,

|α| = α1 + · · ·+ αn, Dα =
∂|α|

∂xα1
1 . . . ∂xαn

n
, aα ≥ 0

is a numerical sequence, p ≥ 1 and ∥. ∥p is the canonical norm in the space
Lp (R

n).
The structure of W−∞ {aα, p} is based on the fact that for any function

h(x) ∈W−∞ {aα, p} the equation

L(u) =

∞∑
|α|=0

(−1)|α|Dα
(
aα |Dα(u)|p−2

Dα(u)
)
= h(x)

Dwu|Γ = 0, |w| = 0, 1, . . .

has a unique solution u(x) ∈W∞
0 {aα, p}.

We have the representation

W−∞ {aα, q} ={h(x) : h(x)

=

∞∑
|α|=0

aαD
αhα(x);hα(x) ∈ Lq (R

n) and

∞∑
|α|=0

aα ∥hα∥qLq
<∞


and q = p

p−1 .

The imbedding problem for non-trivial Sobolev spaces of infinite order are
investigated in [12, 13, 14].

The imbedding W∞ {aα, p} ⊂W∞ {bα, p′} is compact if and only if

lim
m→∞

∞∑
|α|=m+1

bα ∥Dα(u)∥p
′

p′ = 0
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uniformly on the unit ball of the space W∞ {aα, p} [13].
Now consider the space W∞ {aα, 2} of functions u(x) defined on the Euclidean
space Rn, n ≥ 1,

W∞ {aα, 2} =

u(x) ∈ C∞ (Rn) :

∞∑
|α|=0

aα ∥Dα∥22 <∞


An imbedding criterion established in terms of the characteristic function of

these spaces.
The duality of the spaces W∞ {aα, 2} and W−∞ {aα, 2} is given by the rela-

tion

⟨h, v⟩ =
∞∑

|α|=0

aα

∫
G

hα(x)D
αv(x)dx

so thatW∞ {aα, 2} is every where dense in L2 (R
n) with topological inclusion,

andW−∞ {aα, 2} denotes the topological dual space with respect to L2 (R
n) and

then we have the following chain

W∞ {aα, 2} ⊆ L2 (R
n) ⊆W−∞ {aα, 2}

similar to the above chain we have

W∞
0 {aα, 2} ⊆ L2 (R

n) ⊆W−∞
0 {aα, 2}

where W∞
0 {aα, 2} is the set of all functions of W∞ {aα, 2} which vanish on

the boundary Γ of Rn.
The space L2 (0, T;L2 (R

n)) will be denoted by L2(Q), where Q = Rn×] 0, T [,
and L2 (0, T;L2 (R

n)) is the space of all measurable functions t → ϕ(t), the
variable t denotes the time ; t ∈]0, T [, T < ∞ with the Lebesgue measure dt on
]0, T[ such that

∥ϕ∥L2(Q) =

(∫ T

0

∥ϕ(t)∥22dt

) 1
2

<∞

is endowed with the scalar product

(f, g)L2(0, T;L2(Rn)) =

∫ T

0

(f(t), g(t))L2(Rn)dt

which is a Hilbert space[15].
Similarly we define the spaces L2 (0, T;W

∞ {aα, 2}) , L2 (0, T;W
∞
0 {aα, 2})

and L2 (0, T;W
−∞ {aα, 2}) , L2

(
0, T;W−∞

0 {aα, 2}
)
which are its conjugates

respectively.
We have the following chains:

L2 (0, T;W
∞ {aα, 2}) ⊆ L2(Q) ⊆ L2

(
0, T;W−∞ {aα, 2}

)
L2 (0, T;W

∞
0 {aα, 2}) ⊆ L2(Q) ⊆ L2

(
0, T;W−∞

0 {aα, 2}
)
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Finally we shall denote by W (Q) the space of the functions y ∈ L2(0, T;W
∞

{aα, 2}) such that dy
dt ∈ L2 (0, T;W

−∞ {aα, 2}) where dy
dt is the derivative of

y in the sense of W−∞ {aα, 2} valued distribution on ]0, T [.W (Q) is a Banach
space endowed with the norm

∥y∥2W (Q) = ∥y∥2L2(0, T;W∞{aα,2}) +

∥∥∥∥dydt
∥∥∥∥2
L2(0, T;W−∞{aα,2})

3-Main results

We introduce a convex control problem governed by boundary-value problem
of the form

yt +Ay = 0 in Q = Ω×] 0, T [

∂y

∂v
+ βi(y) ∋ ui + fi in Σi = Γ×

]
0, T [, i = 1, 2 (3.1)

y(x, 0) = y0(x) in Ω

Here, Ω is a bounded and open set in Rn with boundary Γ consists of two
parts Γ1 and Γ2, i.e., Γ = Γ1 ∪ Γ2 and Γ1 ∩ Γ2 = Φ, and Σ = Γ×] 0, T [ is the
lateral boundary of Q.

∂
∂v is the outward normal derivative corresponding to A, and βi are maximal

monotone graphs in R×R, which satisfy the conditions

βi(0) ∋ 0, i = 1, 2 (3.2)

the controls ui are taken from the Hilbert spaces L2 (Σi) , i = 1, 2. The
functions y0, fi are fixed in L2 (R

n) and L2 (Σi) , i = 1, 2 respectively.
A is elliptic, bounded and self-adjoint operator of infinite order with finite

dimension, that maps W∞
0 {aα, 2} onto W−∞

0 {aα, 2} and A(u) is given by:

A(u) =
∑∞

|α|=0(−1)|α|aαD
2α(u) = h(x) , aα ≥ 0

Dwu|Γ = 0, |w| = 0, 1, . . . . , |w| ≤ α
(3.3)

The operator ∂
∂t +A is an infinite order parabolic operator which maps

L2 (0, T;W
∞
0 {aα, 2}) onto L2

(
0, T;W−∞

0 {aα, 2}
)

We introduce the following continuous bilinear form on W∞
0 (Rn) :

π(t;ϕ, ψ) = (A(t)ϕ, ψ)L2(Rn) ∀ϕ, ψ ∈W∞
0 (Rn) (3.4)

Lemma 3.1 Consider (3.4) the continuous bilinear form on W∞
0 {aα, 2}, then

π(t;ϕ, ψ) is coercive this means π(t;ϕ, ϕ) ≥ λ∥ϕ∥2W∞
0 {aα,2} λ > 0,
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Proof

π(t;ϕ, ϕ) = (A(t)ϕ, ϕ)L2(Rn) =

 ∞∑
|α|=0

(−1)|α|aαD
2αϕ(x), ϕ(x)


L2(Rn)

=

∫
Rn

∞∑
|α|=0

(−1)|α|aαD
αϕ(x)Dαϕ(x)dx

=

∞∑
|α|=0

(−1)|α|aα (Dαϕ(x), Dαϕ(x))L2(Rn) =

∞∑
|α|=0

(−1)|α|aα ∥Dαϕ(x)∥2L2(Rn)

≥ λ∥ϕ∥2W∞
0 {aα,2}

then π(t;ϕ, ϕ) ≥ λ∥ϕ∥2W∞
0 {aα,2,2}

Definition 3.1. A function y ∈ W (Q) is a solution to (3.1) if there exist
functions ωi ∈ L2 (Σi) , i = 1, 2, such that ωi(σ, t) ∈ βi(y(σ, t)) a.e. (σ, t) ∈
Σi, i = 1, 2,

and

∫
Q

yktdp(x)dt+

∫ T

0

π(y, k)dt+

2∑
i=1

∫
Σi

(ωi − vi) kdΓdt =

∫
Rn

y0(x)k(x, 0)dp(x)

(3.7)
for all k ∈ W (Q) such that k(x, T ) = 0. Here π(y, k) is bilinear functional

has the form (3.4) , condition (3.7) can be equivalently defined as

d

dt
(y(t), ψ) + π(y(t), ψ) +

2∑
i=1

∫
Γi

(ωi − vi)ψdΓ = 0 a.e. t ∈]0, T [

y(0) = y0, for all ψ ∈W∞ {aα, 2} (3.7’)

Let ρ be a C∞
0 -mollifie function on R, satisfying ρ(r) > 0 for r ∈]−1, 1[, ρ(r) =

0 for |r| > 1, ρ(r) = ρ(−r) for all r ∈ R and
∫∞
−∞ ρ(r)dr = 1. We define, for

ε > 0

βε
i(r) =

∫ ∞

−∞
βiε(r − εθ)ρ(θ)dθ, i = 1, 2, r ∈ R (3.8)

where

βiε(r) = ε−1
(
r − (1 + εβi)

−1
r
)

(3.9)

It should be recalled that βε
i are monotonically increasing infinitely differen-

tiable functions. Moreover, βε
i are Lipschitzian with Lipschitz constant E−1, and
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in a certain sense which will be explained below they approximate βi, for ε→ 0.
For each ε > 0, consider the approximating system,

yt +Ay = 0 in Q
∂y
∂v + βε

i (y) = ui + fi in Σi, i = 1, 2
y(x, 0) = y0(x) in Ω.

(3.10)

According to a standard existence result due to Lions[15] the system (3.10)
has a unique solution yε ∈W (Q).

Let Aε :W
∞ {aα, 2} →W−∞ {aα, 2} be the operator defined by

(Aϵy, ψ) = π(y, ψ) +

2∑
i=1

∫
Γi

βε
i (y)ψdσ y, ψ ∈W∞ {aα, 2} (3.11)

And let f ∈ L2 (0, T ;W−∞ {aα, 2} be given by:

(f(t), ψ) =

2∑
i=1

∫
Γi

uiψdσ , ψ ∈W∞ {aα, 2} (3.12)

Then in the sense of definition 3.1, (3.10) can be written as
dy
dt +Aϵy = f, t ∈ [0, T ]
y(0) = y0
Let ji : R → R̄, i = 1, 2, be tow lower semi continuous convex functions such

that ∂ji = βi (it is well known that such functions always exist).
Under the assumptions and the coerciveness condition (3.5), we have
Theorem 3.2. Let y0 ∈ L2 (R

n) and ui ∈ L2 (Σi) , fi ∈ L2 (Σi) , i = 1,2. Then
the system (3.1) has a unique solution y ∈ W (Q). Furthermore, for ε → 0 we
have

yε → y strongly in C ([0, T ];L2 (R
n))∩L2 (0, T ;W

∞ {aα, 2}) and weakly in W (Q)
(3.14)

There exists c > 0 independent of ui such that

∥y∥W (Q) +

2∑
i=1

∥βi(y)∥L2(Σi)
≤ C

(
2∑

i=1

∥ui∥L2(Σi)
+ 1

)
(3.15)

Proof: We take the inner product of (3.13) with yε and integrate over [0, t].
By (3.11) and (3.12) it follows that

∥yε(t)∥L2(Rn) +

∫ t

0

∥yε(s)∥2W∞{aα,2} ds

≤ C
(
∥u1∥2L2(Σ1)

+ ∥u2∥2L2(Σ2)
+ 1
)

t ∈ [0, T ] (3.16)

where t is independent of ε.
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Next we take the inner product of (3.13) with βε
i (yε). In as much as π (ψ, βε

i (ψ)) ≥
0, for all ψ ∈W∞ {aα, 2}, we find, after some calculations,∫

Rn

jεi (yε) dx+

2∑
i=1

∫
Σi

βε
i (yε − ui)β

ε
i (yε) dσdt ≤

∫
Rn

jεi (y0) dx for i = 1, 2

(3.17)
where

jεi (r) =

∫ r

0

βε
i (s)ds, i = 1, 2

Along with assumption (3.2) , (3.17) yields∑2
i=1 ∥βε

i (yε)∥
2
L2(Σi)

≤ C
(∑2

i=1 ∥ui∥
2
L2(Σi)

+ 1
)

and by (3.13) , (3.16) we see that

∥yε∥2W (Q) +
∑2

i=1 ∥βε
i (yε)∥

2
L2(Σi)

≤ C
(∑2

i=1 ∥ui∥
2
L2(Σi)

+ 1
)

Where C is independent of ε.
Now, using (3.13), for ε, λ > 0 we get

∥yε(t)− yλ(t)∥2L2(Rn) + ∥yε(t)− yλ(t)∥2L2(0,T ;H1(R∞))

+ C

2∑
i=1

∫
Σi

(
βε
i (yε)− βλ

i (yλ)
)
(yε − yλ) dσdt ≤ 0

If we take into account (3.8), (3.9) and (3.18) and the monotonicity of βi, we
find

∥yε − yλ∥2C([0,T ];W∞{aα,2}) + ∥yε − yλ∥L2([0,T ];W∞{aα,2}) ≤ C(ε+ λ) (3.20)

Hence y exits in the strong topology of

L2 ([0, T ];W
∞ {aα, 2}) ∩ C ([0, T ];L2 ([0, T ];W

∞ {aα, 2}))
Which yields

yε → y strongly in L2

(
[0, T ];W

1
2 (Γ)

)
⊂ L2(Σ)

In order to get (3.14) , (3.15) we let ε tend to zero in (3.19) and λ → 0 in
(3.20) which completes the proof.

We shall study the following control problem (P) Minimize

1

2

∫
Q

h(x, t) |y(x, t)− yd(x, t)|2 dp(x)dt+ ψ1 (u1) + ψ2 (u2) + φ(y(T )) = J(y, u)

(3.21)
on the class of all ui ∈ L2 (Σi) , i = 1, 2, and y ∈ W (Q) subject to the state

system (3.1).
We shall assume that the following conditions are satisfied
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(1) Ui = L2 (Σi) , i = 1, 2, are the spaces of controls ui, i = 1, 2.
(2) The functions ψi : L2 (Σi) → R̄, ui, i = 1, 2 are lower semi continuous

convex functions and not identically equal to infinity.
(3) The function φ : L2 (R

n) → R is convex and continuous on L2 (R
n).

(4) h ∈ L∞(Q) and yd ∈ L2(Q) are given; h ≥ 0 a.e. on Q.
(5) A is the elliptic symmetric operator which is presented by (3.3) and βi, i =

1, 2, are two maximal monotone graphs in R×R which satisfy condition (3.2).
(6) y0 ∈ L2 (R

n) and fi ∈ L2 (Σi) , i = 1, 2, satisfy the assumptions of Theo-
rem 3.2.

Under our assumptions, the coerciveness condition (3.5), we may apply the
result of Barbu [3],[6] for every pair (u1, u2) ∈ L2 (Σ1)× L2 (Σ2). Problem (P),
has at least optimal (y•, u·1, u

∗
2) where y• ∈ W (Q), ui ∈ L2 (Σi) , i = 1, 2, for

which the infimum of the functional (3.10) is attained for y = y• and ui =
u•i , i = 1, 2.

The optimality result is given in the case in which βi are single-valued and
satisfy the following condition,

(7) The functions βi are monotonically increasing and locally Lipschitzian on
the real axis R. Moreover, there exists c > 0, such that

β′
i(r) ≤ c (|βi(r)|+ |r|+ 1) a.e. r ∈ R, i = 1, 2 (3.22)

In the following we shall introduce the finite element discretization of the
state equation and optimal control problem([1],[14]):

At first let us consider the finite element approximation of the state equation
(3.1). For the spatial discretization we consider conforming Lagrange triangle
elements. We assume that Ω is a polygonal domain. Let Υh be a quasi-uniform
partitioning of Ω into disjoint regular triangles τ , so that

Ω̄ = ∪τ∈Y h τ̄

Associated with Y h a finite dimensional subspace V h of C([0, T ]; Ω̄), such
that for χ ∈ V h and τ ∈ Υh, χ|τ are piecewise linear polynomials. We set

V h
0 = V h ∩W∞

0 {aα, 2}

Let Υh
U be a partitioning of Γ into disjoint regular segments s, so that

Γ = Us∈Y h
U
s̄

Associated with Υh
U is another finite dimensional subspace Uh of L2([0, T ]; Γ),

such that for χ ∈ Uh and s ∈ Υh
U , χ|s are piecewise linear polynomials. Here we

suppose that Y h
U is the restriction of Υh on the boundary Γ and Uh = V h(Γ),

where V h(Γ) is the restriction of V h on the boundary Γ.
Lagrange interpolation operator Ih : C([0, T ]; Ω̄) → V h, we have the following

error estimate ∥w − Ihw∥l,Rn ≤ Chm−l∥v∥m,Rn , 0 ≤ l ≤ 1 ≤ m ≤ ∞
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Qh : L2(Γ) → V h(Γ) and Q̃h : L2 (Rn) → V h
0 denote the orthogonal pro-

jection operators. Further more, Rh : W 1 ([0, T ];Rn) → V h
0 denotes the Ritsz

projection operator defined as: π (Rhw, vh) = π (w, vh) ∀vh ∈ V h
0

It is well known that the Ritz projection satisfies:
∥w −Rhw∥s,Rn ≤ Chl−s∥w∥l,Rn , w ∈ W∞

0 {aα, 2} ∩ W∞ {aα, l} ,∀0 ≤ s ≤
1 ≤ l ≤ ∞

For the L2(Γ) projection operator Qh we also have:

∥w −Qhw∥0,Γ ≤ Chs−
1
2 ∥w∥s,Rn , w ∈W∞ {aα, s} ,∀ 1

2 ≤ s ≤ ∞
and

∥(I −Qh) ∂nw∥0,Γ ≤ Ch
1
2 ∥w∥2,Rn , for w ∈W∞ {aα, 2}

The semi-discrete finite element approximation of (3.1) reads:
find yh ∈ L2

(
V h
)
such that

− (yh, ∂tvh)Q + π (yh, vh)Q = (f, vh)Q +
(
yh0 , vh(., 0)

)
∀vh ∈W∞ {aα, 2},

yh = Qh(u) on Σi = Γ×] 0, T [,
with yh0 an approximation of y0 the semi- discrete finite element approximation

of (3.10), (3.1) reads as follows

Minimize J (yh, uh) over uh ∈ Uh
ad, yh ∈ L2

(
V h
)

(3.28)

subject to

− (yh, ∂tvh)Q + π (yh, vh)Q = (f, vh)Q +
(
yh0 , vh(., 0)

)
∀vh ∈W∞ {aα, 2}

yh = Qh (uh) on Σi = Γ×] 0, T [ (3.29)

where Uh
ad is an appropriate approximation to Ui = L2 (Σi).It follows that

(3.28) ,(3.29) has a unique solution (yh, uh)
We next consider the fully discrete approximation for the above semi-discrete

problem by using the dG(0) scheme in time. For simplicity we consider an
equi-distant partition of the time interval.

Let 0 = t0 < t1 < · · · < tN−1 < tN = T with k = T
N and ti = ik, i =

1, 2, . . . .N . We also let Ii = (ti−1, ti], where i = 1, 2, . . . .N . We construct
the finite element spaces V h ∈ W∞ {aα, 2} with the mesh Υh. Similarly we
construct the finite element spaces Uh of L2([0, T ]; Γ), with the mesh Υh

U . then
we denote by V h, Uh the finite element spaces defined on Υh,Υh

U on each time
step .

Let Vk dente the space of piecewise constant functions on the time portion.
we define the L2 projection operator Pk : L2(0, T ) → Vk on Ii through(

Pk(w)(t) =
1
k

∫
w(s)ds for t ∈ Ii

Then we have the following estimate:

∥(I − Pk)w∥L2(0,T ;H) ≤ Ck ∥wt∥L2(0,T ;H) ,∀w ∈W 1(0, T ;H) (3.30)
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H denotes a separable Hilbert space.
We consider a dG(0) scheme for the time discretization and let

Vhk =
{
θ; Ω̄× [0, T ] → R, θ(., t)|Ω̄ ∈ V h, θ(x, .)|In ∈ P0

}
We introduce for Y,Φ ∈ Vhk

A (Yhk; Φ) = (f,Φ)Q +
(
y0,Φ

0
+

)
, ∀Φ ∈ V 0

hk

Yhk = Λ(u) on Γ (3.31)

Where V 0
hk denotes the subspace of Vhk with functions vanishing on Γ, and

Λ = PkQh

As a result of the application of finite element method on boundary control
problem governed by parabolic Variationl Inequalities with an infinite number
of variables. we estimate the error introduced by the discretization of the state
equation i.e., The error between the solutions of problem (3.1) and (3.31) by the
following theorem :

Theorem 3.3

Suppose that f ∈ L2 (L2 (R
n)) , u ∈ L2 (L2(Γ)), and y0 ∈ L2 (R

n). let y ∈
L2 (L2 (R

n)) and Yhk ∈ Vhk with Yhk|Σ = Λ(u) be the solution of problems (3.1),
(3.31). respectively. then we have

∥y − Yhk∥L2(L2(Rn)) ≤ C
(
h

1
2 + h

1
4

)(
∥f∥L2(L2(Rn)) + ∥y0∥0,Rn + ∥u∥L2(L2(Rn))

)
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